On the Efficiency of the Coincidence Search in Gravitational Wave Experiments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-01

AUTHORS

P. Astone, G. V. Pallottino, G. Pizzella

ABSTRACT

We discuss the problem of the detection of gravitational waves (GW) signals with small energy signal to noise ratio (SNR). We consider coincidence experiments between data processed by optimum filters matched to delta-like bursts. It is shown, by calculation and by simulation, that, because of the noise, the “event” lists produced by the same signals on different detectors, using the same filters, overlap only partially—about 30 percent for SNR close to the threshold used for defining the events. Furthermore, because of the noise, the correlation of the event energy between identical detectors is weak and cannot be used as a strong discriminator against noise in coincidence search, even for SNR = 10 or more. More... »

PAGES

105-114

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1018877001321

DOI

http://dx.doi.org/10.1023/a:1018877001321

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044732093


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Astone", 
        "givenName": "P.", 
        "id": "sg:person.01245312740.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245312740.03"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Pallottino", 
        "givenName": "G. V.", 
        "id": "sg:person.016503762715.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016503762715.72"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Pizzella", 
        "givenName": "G.", 
        "id": "sg:person.016536750112.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016536750112.16"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-01", 
    "datePublishedReg": "1998-01-01", 
    "description": "We discuss the problem of the detection of gravitational waves (GW) signals with small energy signal to noise ratio (SNR). We consider coincidence experiments between data processed by optimum filters matched to delta-like bursts. It is shown, by calculation and by simulation, that, because of the noise, the \u201cevent\u201d lists produced by the same signals on different detectors, using the same filters, overlap only partially\u2014about 30 percent for SNR close to the threshold used for defining the events. Furthermore, because of the noise, the correlation of the event energy between identical detectors is weak and cannot be used as a strong discriminator against noise in coincidence search, even for SNR = 10 or more.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1018877001321", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052061", 
        "issn": [
          "0001-7701", 
          "1572-9532"
        ], 
        "name": "General Relativity and Gravitation", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "coincidence search", 
      "gravitational wave experiments", 
      "gravitational wave signals", 
      "coincidence experiments", 
      "wave experiments", 
      "identical detectors", 
      "event energy", 
      "different detectors", 
      "wave signals", 
      "detector", 
      "energy signals", 
      "energy", 
      "same signal", 
      "bursts", 
      "noise", 
      "calculations", 
      "signals", 
      "optimum filter", 
      "experiments", 
      "SNR", 
      "filter", 
      "discriminator", 
      "same filter", 
      "threshold", 
      "simulations", 
      "detection", 
      "efficiency", 
      "search", 
      "ratio", 
      "correlation", 
      "events", 
      "problem", 
      "data", 
      "percent", 
      "list", 
      "strongest discriminator", 
      "small energy signal", 
      "delta-like bursts"
    ], 
    "name": "On the Efficiency of the Coincidence Search in Gravitational Wave Experiments", 
    "pagination": "105-114", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044732093"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1018877001321"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1018877001321", 
      "https://app.dimensions.ai/details/publication/pub.1044732093"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_269.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1018877001321"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1018877001321'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1018877001321'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1018877001321'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1018877001321'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      21 PREDICATES      64 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1018877001321 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N0ffee1d528bd4740ae8d31d337ed9f0a
4 schema:datePublished 1998-01
5 schema:datePublishedReg 1998-01-01
6 schema:description We discuss the problem of the detection of gravitational waves (GW) signals with small energy signal to noise ratio (SNR). We consider coincidence experiments between data processed by optimum filters matched to delta-like bursts. It is shown, by calculation and by simulation, that, because of the noise, the “event” lists produced by the same signals on different detectors, using the same filters, overlap only partially—about 30 percent for SNR close to the threshold used for defining the events. Furthermore, because of the noise, the correlation of the event energy between identical detectors is weak and cannot be used as a strong discriminator against noise in coincidence search, even for SNR = 10 or more.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N1d6ec5182abb4245b58c70fec472e520
11 N2f018f2b69554687afd0600f86b11431
12 sg:journal.1052061
13 schema:keywords SNR
14 bursts
15 calculations
16 coincidence experiments
17 coincidence search
18 correlation
19 data
20 delta-like bursts
21 detection
22 detector
23 different detectors
24 discriminator
25 efficiency
26 energy
27 energy signals
28 event energy
29 events
30 experiments
31 filter
32 gravitational wave experiments
33 gravitational wave signals
34 identical detectors
35 list
36 noise
37 optimum filter
38 percent
39 problem
40 ratio
41 same filter
42 same signal
43 search
44 signals
45 simulations
46 small energy signal
47 strongest discriminator
48 threshold
49 wave experiments
50 wave signals
51 schema:name On the Efficiency of the Coincidence Search in Gravitational Wave Experiments
52 schema:pagination 105-114
53 schema:productId N57f82081ea664713a3197b6ea177bbaf
54 Ne2344ca9e58644ffa2e956c8ec96ce91
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044732093
56 https://doi.org/10.1023/a:1018877001321
57 schema:sdDatePublished 2022-01-01T18:07
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Neb1cef56f8c24c828d0b73b01f24a338
60 schema:url https://doi.org/10.1023/a:1018877001321
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0ffee1d528bd4740ae8d31d337ed9f0a rdf:first sg:person.01245312740.03
65 rdf:rest N46fddb55d07b437f940407ea437671ef
66 N1d6ec5182abb4245b58c70fec472e520 schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 N2f018f2b69554687afd0600f86b11431 schema:volumeNumber 30
69 rdf:type schema:PublicationVolume
70 N46fddb55d07b437f940407ea437671ef rdf:first sg:person.016503762715.72
71 rdf:rest Nfb9f816f67cc407ebb68ebce76e47bf0
72 N57f82081ea664713a3197b6ea177bbaf schema:name dimensions_id
73 schema:value pub.1044732093
74 rdf:type schema:PropertyValue
75 Ne2344ca9e58644ffa2e956c8ec96ce91 schema:name doi
76 schema:value 10.1023/a:1018877001321
77 rdf:type schema:PropertyValue
78 Neb1cef56f8c24c828d0b73b01f24a338 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nfb9f816f67cc407ebb68ebce76e47bf0 rdf:first sg:person.016536750112.16
81 rdf:rest rdf:nil
82 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
86 schema:name Other Physical Sciences
87 rdf:type schema:DefinedTerm
88 sg:journal.1052061 schema:issn 0001-7701
89 1572-9532
90 schema:name General Relativity and Gravitation
91 schema:publisher Springer Nature
92 rdf:type schema:Periodical
93 sg:person.01245312740.03 schema:familyName Astone
94 schema:givenName P.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245312740.03
96 rdf:type schema:Person
97 sg:person.016503762715.72 schema:familyName Pallottino
98 schema:givenName G. V.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016503762715.72
100 rdf:type schema:Person
101 sg:person.016536750112.16 schema:familyName Pizzella
102 schema:givenName G.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016536750112.16
104 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...