On the Efficiency of the Coincidence Search in Gravitational Wave Experiments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-01

AUTHORS

P. Astone, G. V. Pallottino, G. Pizzella

ABSTRACT

We discuss the problem of the detection of gravitational waves (GW) signals with small energy signal to noise ratio (SNR). We consider coincidence experiments between data processed by optimum filters matched to delta-like bursts. It is shown, by calculation and by simulation, that, because of the noise, the “event” lists produced by the same signals on different detectors, using the same filters, overlap only partially—about 30 percent for SNR close to the threshold used for defining the events. Furthermore, because of the noise, the correlation of the event energy between identical detectors is weak and cannot be used as a strong discriminator against noise in coincidence search, even for SNR = 10 or more. More... »

PAGES

105-114

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1018877001321

DOI

http://dx.doi.org/10.1023/a:1018877001321

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044732093


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Astone", 
        "givenName": "P.", 
        "id": "sg:person.01245312740.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245312740.03"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Pallottino", 
        "givenName": "G. V.", 
        "id": "sg:person.016503762715.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016503762715.72"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Pizzella", 
        "givenName": "G.", 
        "id": "sg:person.016536750112.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016536750112.16"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-01", 
    "datePublishedReg": "1998-01-01", 
    "description": "We discuss the problem of the detection of gravitational waves (GW) signals with small energy signal to noise ratio (SNR). We consider coincidence experiments between data processed by optimum filters matched to delta-like bursts. It is shown, by calculation and by simulation, that, because of the noise, the \u201cevent\u201d lists produced by the same signals on different detectors, using the same filters, overlap only partially\u2014about 30 percent for SNR close to the threshold used for defining the events. Furthermore, because of the noise, the correlation of the event energy between identical detectors is weak and cannot be used as a strong discriminator against noise in coincidence search, even for SNR = 10 or more.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1018877001321", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052061", 
        "issn": [
          "0001-7701", 
          "1572-9532"
        ], 
        "name": "General Relativity and Gravitation", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "coincidence search", 
      "gravitational wave experiments", 
      "gravitational wave signals", 
      "coincidence experiments", 
      "wave experiments", 
      "identical detectors", 
      "event energy", 
      "different detectors", 
      "wave signals", 
      "detector", 
      "energy signals", 
      "energy", 
      "same signal", 
      "bursts", 
      "noise", 
      "calculations", 
      "signals", 
      "optimum filter", 
      "experiments", 
      "SNR", 
      "filter", 
      "discriminator", 
      "same filter", 
      "threshold", 
      "simulations", 
      "detection", 
      "efficiency", 
      "search", 
      "ratio", 
      "correlation", 
      "events", 
      "problem", 
      "data", 
      "percent", 
      "list", 
      "strongest discriminator", 
      "small energy signal", 
      "delta-like bursts"
    ], 
    "name": "On the Efficiency of the Coincidence Search in Gravitational Wave Experiments", 
    "pagination": "105-114", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044732093"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1018877001321"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1018877001321", 
      "https://app.dimensions.ai/details/publication/pub.1044732093"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_300.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1018877001321"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1018877001321'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1018877001321'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1018877001321'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1018877001321'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      21 PREDICATES      64 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1018877001321 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Na0bdb435d4944b7cb6ccbecc0f1c1721
4 schema:datePublished 1998-01
5 schema:datePublishedReg 1998-01-01
6 schema:description We discuss the problem of the detection of gravitational waves (GW) signals with small energy signal to noise ratio (SNR). We consider coincidence experiments between data processed by optimum filters matched to delta-like bursts. It is shown, by calculation and by simulation, that, because of the noise, the “event” lists produced by the same signals on different detectors, using the same filters, overlap only partially—about 30 percent for SNR close to the threshold used for defining the events. Furthermore, because of the noise, the correlation of the event energy between identical detectors is weak and cannot be used as a strong discriminator against noise in coincidence search, even for SNR = 10 or more.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N17c967de807f4c56abb2d519a589643a
11 N531fcd18cd1445a3b8a3cd8ed43ffbef
12 sg:journal.1052061
13 schema:keywords SNR
14 bursts
15 calculations
16 coincidence experiments
17 coincidence search
18 correlation
19 data
20 delta-like bursts
21 detection
22 detector
23 different detectors
24 discriminator
25 efficiency
26 energy
27 energy signals
28 event energy
29 events
30 experiments
31 filter
32 gravitational wave experiments
33 gravitational wave signals
34 identical detectors
35 list
36 noise
37 optimum filter
38 percent
39 problem
40 ratio
41 same filter
42 same signal
43 search
44 signals
45 simulations
46 small energy signal
47 strongest discriminator
48 threshold
49 wave experiments
50 wave signals
51 schema:name On the Efficiency of the Coincidence Search in Gravitational Wave Experiments
52 schema:pagination 105-114
53 schema:productId N496c6ed6d39348939c7cb2480fe48c8f
54 Nbf19b85b5aa442f0b25fed85536607fb
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044732093
56 https://doi.org/10.1023/a:1018877001321
57 schema:sdDatePublished 2021-11-01T18:03
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N9d137ca7388a4527b9145ec8409ae194
60 schema:url https://doi.org/10.1023/a:1018877001321
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N17c967de807f4c56abb2d519a589643a schema:volumeNumber 30
65 rdf:type schema:PublicationVolume
66 N496c6ed6d39348939c7cb2480fe48c8f schema:name doi
67 schema:value 10.1023/a:1018877001321
68 rdf:type schema:PropertyValue
69 N531fcd18cd1445a3b8a3cd8ed43ffbef schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 N9cf0c109884b456ea5304cc0774bbc66 rdf:first sg:person.016536750112.16
72 rdf:rest rdf:nil
73 N9d137ca7388a4527b9145ec8409ae194 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Na0bdb435d4944b7cb6ccbecc0f1c1721 rdf:first sg:person.01245312740.03
76 rdf:rest Nbcd71652bbfc4e50ac60083e23c8e77c
77 Nbcd71652bbfc4e50ac60083e23c8e77c rdf:first sg:person.016503762715.72
78 rdf:rest N9cf0c109884b456ea5304cc0774bbc66
79 Nbf19b85b5aa442f0b25fed85536607fb schema:name dimensions_id
80 schema:value pub.1044732093
81 rdf:type schema:PropertyValue
82 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
86 schema:name Other Physical Sciences
87 rdf:type schema:DefinedTerm
88 sg:journal.1052061 schema:issn 0001-7701
89 1572-9532
90 schema:name General Relativity and Gravitation
91 schema:publisher Springer Nature
92 rdf:type schema:Periodical
93 sg:person.01245312740.03 schema:familyName Astone
94 schema:givenName P.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245312740.03
96 rdf:type schema:Person
97 sg:person.016503762715.72 schema:familyName Pallottino
98 schema:givenName G. V.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016503762715.72
100 rdf:type schema:Person
101 sg:person.016536750112.16 schema:familyName Pizzella
102 schema:givenName G.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016536750112.16
104 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...