What Can One Learn About Self-Organized Criticality from Dynamical Systems Theory? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2000-01

AUTHORS

Ph. Blanchard, B. Cessac, T. Krüger

ABSTRACT

We develop a dynamical system approach for the Zhang model of self-organized criticality, for which the dynamics can be described either in terms of iterated function systems or as a piecewise hyperbolic dynamical system of skew-product type. In this setting we describe the SOC attractor, and discuss its fractal structure. We show how the Lyapunov exponents, the Haussdorf dimensions, and the system size are related to the probability distribution of the avalanche size via the Ledrappier–Young formula. More... »

PAGES

375-404

References to SciGraph publications

  • 1993-04. Asymmetric abeiian sandpile models in JOURNAL OF STATISTICAL PHYSICS
  • 1997-07. A dynamical system approach to SOC models of Zhang's type in JOURNAL OF STATISTICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1018639308981

    DOI

    http://dx.doi.org/10.1023/a:1018639308981

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022558143


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Bielefeld University", 
              "id": "https://www.grid.ac/institutes/grid.7491.b", 
              "name": [
                "University of Bielefeld, BiBoS, D-33501, Bielefeld, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blanchard", 
            "givenName": "Ph.", 
            "id": "sg:person.0753752122.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753752122.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut de Physique de Nice", 
              "id": "https://www.grid.ac/institutes/grid.497397.7", 
              "name": [
                "Institut Non Lin\u00e9aire de Nice, 06500, Valbonne, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cessac", 
            "givenName": "B.", 
            "id": "sg:person.01074735442.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074735442.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Berlin", 
              "id": "https://www.grid.ac/institutes/grid.6734.6", 
              "name": [
                "University of Bielefeld, BiBoS, D-33501, Bielefeld, Germany", 
                "Technische Universitaet, 10623, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kr\u00fcger", 
            "givenName": "T.", 
            "id": "sg:person.01122521033.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122521033.91"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physreve.56.1590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000899220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.56.1590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000899220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02508473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012120925", 
              "https://doi.org/10.1007/bf02508473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01048088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021690454", 
              "https://doi.org/10.1007/bf01048088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4371(91)90248-b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024303923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4371(91)90248-b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024303923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4371(92)90432-p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034540986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-4371(92)90432-p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034540986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/26/3/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042884815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm1972v027n04abeh001383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058194041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm1977v032n04abeh001639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058194255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.38.364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060478114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.38.364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060478114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.59.381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060796158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.59.381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060796158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.63.470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060799940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.63.470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060799940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.64.1613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060800318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.64.1613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060800318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.57.617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.57.617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1971328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069676611"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2000-01", 
        "datePublishedReg": "2000-01-01", 
        "description": "We develop a dynamical system approach for the Zhang model of self-organized criticality, for which the dynamics can be described either in terms of iterated function systems or as a piecewise hyperbolic dynamical system of skew-product type. In this setting we describe the SOC attractor, and discuss its fractal structure. We show how the Lyapunov exponents, the Haussdorf dimensions, and the system size are related to the probability distribution of the avalanche size via the Ledrappier\u2013Young formula.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1018639308981", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1040979", 
            "issn": [
              "0022-4715", 
              "1572-9613"
            ], 
            "name": "Journal of Statistical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "98"
          }
        ], 
        "name": "What Can One Learn About Self-Organized Criticality from Dynamical Systems Theory?", 
        "pagination": "375-404", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6b78eb8b64d57c6adf69b9b316e171d944c069dd47255f860a7c1999211fbe6c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1018639308981"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022558143"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1018639308981", 
          "https://app.dimensions.ai/details/publication/pub.1022558143"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000505.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023/A:1018639308981"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1018639308981'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1018639308981'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1018639308981'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1018639308981'


     

    This table displays all metadata directly associated to this object as RDF triples.

    126 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1018639308981 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N029a7587855747d291c4e9e9f81aeb09
    4 schema:citation sg:pub.10.1007/bf01048088
    5 sg:pub.10.1007/bf02508473
    6 https://doi.org/10.1016/0378-4371(91)90248-b
    7 https://doi.org/10.1016/0378-4371(92)90432-p
    8 https://doi.org/10.1070/rm1972v027n04abeh001383
    9 https://doi.org/10.1070/rm1977v032n04abeh001639
    10 https://doi.org/10.1103/physreva.38.364
    11 https://doi.org/10.1103/physreve.56.1590
    12 https://doi.org/10.1103/physrevlett.59.381
    13 https://doi.org/10.1103/physrevlett.63.470
    14 https://doi.org/10.1103/physrevlett.64.1613
    15 https://doi.org/10.1103/revmodphys.57.617
    16 https://doi.org/10.1209/0295-5075/26/3/004
    17 https://doi.org/10.2307/1971328
    18 schema:datePublished 2000-01
    19 schema:datePublishedReg 2000-01-01
    20 schema:description We develop a dynamical system approach for the Zhang model of self-organized criticality, for which the dynamics can be described either in terms of iterated function systems or as a piecewise hyperbolic dynamical system of skew-product type. In this setting we describe the SOC attractor, and discuss its fractal structure. We show how the Lyapunov exponents, the Haussdorf dimensions, and the system size are related to the probability distribution of the avalanche size via the Ledrappier–Young formula.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf Nb8164a58027b4e778ae1c5c1224c05c6
    25 Nce29a66e6c8745948c5574b18d434929
    26 sg:journal.1040979
    27 schema:name What Can One Learn About Self-Organized Criticality from Dynamical Systems Theory?
    28 schema:pagination 375-404
    29 schema:productId N23deaf65d57b46ddb87b877908aa33e0
    30 Ndf6aecc5e9f54283858e453f583493ad
    31 Nf37d548058be44a7a9aee68352e142d9
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022558143
    33 https://doi.org/10.1023/a:1018639308981
    34 schema:sdDatePublished 2019-04-10T17:30
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N6827d1e623844e09b45fc7bb179a4ced
    37 schema:url http://link.springer.com/10.1023/A:1018639308981
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N029a7587855747d291c4e9e9f81aeb09 rdf:first sg:person.0753752122.06
    42 rdf:rest N48d9033a3a1a4158a5054e876a5cf6b2
    43 N23deaf65d57b46ddb87b877908aa33e0 schema:name dimensions_id
    44 schema:value pub.1022558143
    45 rdf:type schema:PropertyValue
    46 N48d9033a3a1a4158a5054e876a5cf6b2 rdf:first sg:person.01074735442.62
    47 rdf:rest N6c80790135504a728d48d2cf2f847607
    48 N6827d1e623844e09b45fc7bb179a4ced schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 N6c80790135504a728d48d2cf2f847607 rdf:first sg:person.01122521033.91
    51 rdf:rest rdf:nil
    52 Nb8164a58027b4e778ae1c5c1224c05c6 schema:issueNumber 1-2
    53 rdf:type schema:PublicationIssue
    54 Nce29a66e6c8745948c5574b18d434929 schema:volumeNumber 98
    55 rdf:type schema:PublicationVolume
    56 Ndf6aecc5e9f54283858e453f583493ad schema:name doi
    57 schema:value 10.1023/a:1018639308981
    58 rdf:type schema:PropertyValue
    59 Nf37d548058be44a7a9aee68352e142d9 schema:name readcube_id
    60 schema:value 6b78eb8b64d57c6adf69b9b316e171d944c069dd47255f860a7c1999211fbe6c
    61 rdf:type schema:PropertyValue
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Applied Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1040979 schema:issn 0022-4715
    69 1572-9613
    70 schema:name Journal of Statistical Physics
    71 rdf:type schema:Periodical
    72 sg:person.01074735442.62 schema:affiliation https://www.grid.ac/institutes/grid.497397.7
    73 schema:familyName Cessac
    74 schema:givenName B.
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074735442.62
    76 rdf:type schema:Person
    77 sg:person.01122521033.91 schema:affiliation https://www.grid.ac/institutes/grid.6734.6
    78 schema:familyName Krüger
    79 schema:givenName T.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122521033.91
    81 rdf:type schema:Person
    82 sg:person.0753752122.06 schema:affiliation https://www.grid.ac/institutes/grid.7491.b
    83 schema:familyName Blanchard
    84 schema:givenName Ph.
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753752122.06
    86 rdf:type schema:Person
    87 sg:pub.10.1007/bf01048088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021690454
    88 https://doi.org/10.1007/bf01048088
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/bf02508473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012120925
    91 https://doi.org/10.1007/bf02508473
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/0378-4371(91)90248-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1024303923
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/0378-4371(92)90432-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1034540986
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1070/rm1972v027n04abeh001383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058194041
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1070/rm1977v032n04abeh001639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058194255
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1103/physreva.38.364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060478114
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1103/physreve.56.1590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000899220
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1103/physrevlett.59.381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796158
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1103/physrevlett.63.470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799940
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1103/physrevlett.64.1613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800318
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1103/revmodphys.57.617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839073
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1209/0295-5075/26/3/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042884815
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.2307/1971328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676611
    116 rdf:type schema:CreativeWork
    117 https://www.grid.ac/institutes/grid.497397.7 schema:alternateName Institut de Physique de Nice
    118 schema:name Institut Non Linéaire de Nice, 06500, Valbonne, France
    119 rdf:type schema:Organization
    120 https://www.grid.ac/institutes/grid.6734.6 schema:alternateName Technical University of Berlin
    121 schema:name Technische Universitaet, 10623, Berlin, Germany
    122 University of Bielefeld, BiBoS, D-33501, Bielefeld, Germany
    123 rdf:type schema:Organization
    124 https://www.grid.ac/institutes/grid.7491.b schema:alternateName Bielefeld University
    125 schema:name University of Bielefeld, BiBoS, D-33501, Bielefeld, Germany
    126 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...