Micropyretic synthesis of Ni-Al intermetallic composites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-04

AUTHORS

HAO ZHANG, J. A SEKHAR

ABSTRACT

Ni3Al and NiAl intermetallic compounds and their composites are potential structural materials for high-temperature applications. Among the composites with different types of reinforcements, particulate-reinforced composites possess several advantages, such as isotropic properties, lower costs of reinforcement and easy fabrication. Particulate-reinforced composites also allow for a wider range of component geometry. In this article, Ni-Al-Cu composites with CeO2 particulates were prepared using the micropyretic synthesis techniques. The effect of chemical composition on the processing response parameters, the phases of products, the microstructure and mechanical properties of the composites were studied. X-ray diffraction results indicated that the phases of the synthesized composites were critically dependent upon the aluminium content. The final porosity of the composites decreased with an increase in the aluminium content. The flexural bending test showed a variation in the flexural strength of the composites with changing microstructure. The flexural strength and the elastic modulus increased with the aluminium content and the final density. More... »

PAGES

1815-1824

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1018596505118

DOI

http://dx.doi.org/10.1023/a:1018596505118

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019336440


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221, Cincinnati, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "ZHANG", 
        "givenName": "HAO", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221, Cincinnati, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "SEKHAR", 
        "givenName": "J. A", 
        "id": "sg:person.016661564161.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/jmr.1990.1649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048322370", 
          "https://doi.org/10.1557/jmr.1990.1649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03258543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014775245", 
          "https://doi.org/10.1007/bf03258543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01160566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052089103", 
          "https://doi.org/10.1007/bf01160566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00544448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037757472", 
          "https://doi.org/10.1007/bf00544448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.1993.2515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027179252", 
          "https://doi.org/10.1557/jmr.1993.2515"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-04", 
    "datePublishedReg": "1997-04-01", 
    "description": "Ni3Al and NiAl intermetallic compounds and their composites are potential structural materials for high-temperature applications. Among the composites with different types of reinforcements, particulate-reinforced composites possess several advantages, such as isotropic properties, lower costs of reinforcement and easy fabrication. Particulate-reinforced composites also allow for a wider range of component geometry. In this article, Ni-Al-Cu composites with CeO2 particulates were prepared using the micropyretic synthesis techniques. The effect of chemical composition on the processing response parameters, the phases of products, the microstructure and mechanical properties of the composites were studied. X-ray diffraction results indicated that the phases of the synthesized composites were critically dependent upon the aluminium content. The final porosity of the composites decreased with an increase in the aluminium content. The flexural bending test showed a variation in the flexural strength of the composites with changing microstructure. The flexural strength and the elastic modulus increased with the aluminium content and the final density.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1018596505118", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312116", 
        "issn": [
          "0022-2461", 
          "1573-4811"
        ], 
        "name": "Journal of Materials Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "particulate-reinforced composites", 
      "flexural strength", 
      "high-temperature applications", 
      "aluminum content", 
      "potential structural materials", 
      "NiAl intermetallic compound", 
      "Ni-Al", 
      "intermetallic composites", 
      "Cu composites", 
      "micropyretic synthesis", 
      "structural materials", 
      "final porosity", 
      "mechanical properties", 
      "component geometry", 
      "isotropic properties", 
      "composites", 
      "elastic modulus", 
      "easy fabrication", 
      "ray diffraction results", 
      "intermetallic compounds", 
      "final density", 
      "microstructure", 
      "low cost", 
      "diffraction results", 
      "phases of products", 
      "reinforcement", 
      "response parameters", 
      "synthesis technique", 
      "strength", 
      "fabrication", 
      "porosity", 
      "properties", 
      "modulus", 
      "chemical composition", 
      "Ni3Al", 
      "wide range", 
      "particulates", 
      "phase", 
      "materials", 
      "content", 
      "geometry", 
      "different types", 
      "density", 
      "applications", 
      "parameters", 
      "cost", 
      "advantages", 
      "technique", 
      "range", 
      "test", 
      "composition", 
      "results", 
      "products", 
      "variation", 
      "effect", 
      "increase", 
      "types", 
      "synthesis", 
      "compounds", 
      "article", 
      "CeO2 particulates", 
      "micropyretic synthesis techniques", 
      "processing response parameters", 
      "Ni-Al intermetallic composites"
    ], 
    "name": "Micropyretic synthesis of Ni-Al intermetallic composites", 
    "pagination": "1815-1824", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019336440"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1018596505118"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1018596505118", 
      "https://app.dimensions.ai/details/publication/pub.1019336440"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_297.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1018596505118"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1018596505118'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1018596505118'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1018596505118'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1018596505118'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      22 PREDICATES      94 URIs      81 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1018596505118 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N8bc27cf8db1847878731d677fc8168d8
4 schema:citation sg:pub.10.1007/bf00544448
5 sg:pub.10.1007/bf01160566
6 sg:pub.10.1007/bf03258543
7 sg:pub.10.1557/jmr.1990.1649
8 sg:pub.10.1557/jmr.1993.2515
9 schema:datePublished 1997-04
10 schema:datePublishedReg 1997-04-01
11 schema:description Ni3Al and NiAl intermetallic compounds and their composites are potential structural materials for high-temperature applications. Among the composites with different types of reinforcements, particulate-reinforced composites possess several advantages, such as isotropic properties, lower costs of reinforcement and easy fabrication. Particulate-reinforced composites also allow for a wider range of component geometry. In this article, Ni-Al-Cu composites with CeO2 particulates were prepared using the micropyretic synthesis techniques. The effect of chemical composition on the processing response parameters, the phases of products, the microstructure and mechanical properties of the composites were studied. X-ray diffraction results indicated that the phases of the synthesized composites were critically dependent upon the aluminium content. The final porosity of the composites decreased with an increase in the aluminium content. The flexural bending test showed a variation in the flexural strength of the composites with changing microstructure. The flexural strength and the elastic modulus increased with the aluminium content and the final density.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N37e97c890b904594af04a549f85ae6e4
16 N8be8a1ea35ad452cbbe28dab69b8d4c0
17 sg:journal.1312116
18 schema:keywords CeO2 particulates
19 Cu composites
20 Ni-Al
21 Ni-Al intermetallic composites
22 Ni3Al
23 NiAl intermetallic compound
24 advantages
25 aluminum content
26 applications
27 article
28 chemical composition
29 component geometry
30 composites
31 composition
32 compounds
33 content
34 cost
35 density
36 different types
37 diffraction results
38 easy fabrication
39 effect
40 elastic modulus
41 fabrication
42 final density
43 final porosity
44 flexural strength
45 geometry
46 high-temperature applications
47 increase
48 intermetallic composites
49 intermetallic compounds
50 isotropic properties
51 low cost
52 materials
53 mechanical properties
54 micropyretic synthesis
55 micropyretic synthesis techniques
56 microstructure
57 modulus
58 parameters
59 particulate-reinforced composites
60 particulates
61 phase
62 phases of products
63 porosity
64 potential structural materials
65 processing response parameters
66 products
67 properties
68 range
69 ray diffraction results
70 reinforcement
71 response parameters
72 results
73 strength
74 structural materials
75 synthesis
76 synthesis technique
77 technique
78 test
79 types
80 variation
81 wide range
82 schema:name Micropyretic synthesis of Ni-Al intermetallic composites
83 schema:pagination 1815-1824
84 schema:productId N95f052b5cede4e64a0202459975086c9
85 Nfe9fdceaa21844868d584d048888b941
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019336440
87 https://doi.org/10.1023/a:1018596505118
88 schema:sdDatePublished 2022-01-01T18:08
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N405343cad778411eb128c7074d31b65a
91 schema:url https://doi.org/10.1023/a:1018596505118
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N2f5cc996035d4433ab884328d0f984f2 schema:affiliation grid-institutes:grid.24827.3b
96 schema:familyName ZHANG
97 schema:givenName HAO
98 rdf:type schema:Person
99 N37e97c890b904594af04a549f85ae6e4 schema:volumeNumber 32
100 rdf:type schema:PublicationVolume
101 N405343cad778411eb128c7074d31b65a schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N8bc27cf8db1847878731d677fc8168d8 rdf:first N2f5cc996035d4433ab884328d0f984f2
104 rdf:rest Nf0eb0c848ba946259d9522da39dd6308
105 N8be8a1ea35ad452cbbe28dab69b8d4c0 schema:issueNumber 7
106 rdf:type schema:PublicationIssue
107 N95f052b5cede4e64a0202459975086c9 schema:name doi
108 schema:value 10.1023/a:1018596505118
109 rdf:type schema:PropertyValue
110 Nf0eb0c848ba946259d9522da39dd6308 rdf:first sg:person.016661564161.49
111 rdf:rest rdf:nil
112 Nfe9fdceaa21844868d584d048888b941 schema:name dimensions_id
113 schema:value pub.1019336440
114 rdf:type schema:PropertyValue
115 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
116 schema:name Engineering
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
119 schema:name Materials Engineering
120 rdf:type schema:DefinedTerm
121 sg:journal.1312116 schema:issn 0022-2461
122 1573-4811
123 schema:name Journal of Materials Science
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.016661564161.49 schema:affiliation grid-institutes:grid.24827.3b
127 schema:familyName SEKHAR
128 schema:givenName J. A
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49
130 rdf:type schema:Person
131 sg:pub.10.1007/bf00544448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037757472
132 https://doi.org/10.1007/bf00544448
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/bf01160566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052089103
135 https://doi.org/10.1007/bf01160566
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/bf03258543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014775245
138 https://doi.org/10.1007/bf03258543
139 rdf:type schema:CreativeWork
140 sg:pub.10.1557/jmr.1990.1649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048322370
141 https://doi.org/10.1557/jmr.1990.1649
142 rdf:type schema:CreativeWork
143 sg:pub.10.1557/jmr.1993.2515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027179252
144 https://doi.org/10.1557/jmr.1993.2515
145 rdf:type schema:CreativeWork
146 grid-institutes:grid.24827.3b schema:alternateName Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221, Cincinnati, OH, USA
147 schema:name Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221, Cincinnati, OH, USA
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...