Ontology type: schema:ScholarlyArticle
2001-07
AUTHORSA. A. Merkin, T. V. Mironova, E. V. Zelepukina, V. A. Zubov
ABSTRACTWe consider the solution to the phase problem in optics in application to registration and analysis of the amplitude–phase structure of two‐dimensional optical fields that form or transmit images, as well as the amplitude–phase structure of transfer and spread functions of media, in which light propagates, or those of systems that form fields or images. The idea of our method is to introduce two additional modulators that visualize phase information. We consider two variants of optical schemes designed for analyzing the amplitude‐phase characteristics of two‐dimensional optical fields as well as two‐dimensional complex transfer and spread functions. These schemes are special because the two‐dimensional structure of the fields is transmitted at a distance in a disturbing medium or system and four independent two‐dimensional intensity distributions are to be registered in the course of processing the two‐dimensional fields. To solve the problem, the first additional modulation preceding the transmitting medium is introduced in the scheme. Then the spectrum of spatial frequencies is formed by the optical system. The second additional spatial modulation is applied either in the optical system plane (the first variant of the scheme) or in the plane of spatial frequencies formed by the optical system (the second variant). A separate optical system is used for registration in the plane of spatial frequencies in the first variant of the scheme and in the image plane in the second variant. The intensity distributions obtained make it possible to solve the problem. More... »
PAGES306-323
http://scigraph.springernature.com/pub.10.1023/a:1017995902937
DOIhttp://dx.doi.org/10.1023/a:1017995902937
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1038022899
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.425806.d",
"name": [
"Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Merkin",
"givenName": "A. A.",
"id": "sg:person.016340465555.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016340465555.29"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.425806.d",
"name": [
"Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Mironova",
"givenName": "T. V.",
"id": "sg:person.012735437371.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012735437371.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.425806.d",
"name": [
"Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Zelepukina",
"givenName": "E. V.",
"id": "sg:person.013075204245.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075204245.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.425806.d",
"name": [
"Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Zubov",
"givenName": "V. A.",
"id": "sg:person.013653363167.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013653363167.80"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1023/a:1009588528617",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032483361",
"https://doi.org/10.1023/a:1009588528617"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf03380173",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084517116",
"https://doi.org/10.1007/bf03380173"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf03380166",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084517109",
"https://doi.org/10.1007/bf03380166"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02508741",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035507323",
"https://doi.org/10.1007/bf02508741"
],
"type": "CreativeWork"
}
],
"datePublished": "2001-07",
"datePublishedReg": "2001-07-01",
"description": "We consider the solution to the phase problem in optics in application to registration and analysis of the amplitude\u2013phase structure of two\u2010dimensional optical fields that form or transmit images, as well as the amplitude\u2013phase structure of transfer and spread functions of media, in which light propagates, or those of systems that form fields or images. The idea of our method is to introduce two additional modulators that visualize phase information. We consider two variants of optical schemes designed for analyzing the amplitude\u2010phase characteristics of two\u2010dimensional optical fields as well as two\u2010dimensional complex transfer and spread functions. These schemes are special because the two\u2010dimensional structure of the fields is transmitted at a distance in a disturbing medium or system and four independent two\u2010dimensional intensity distributions are to be registered in the course of processing the two\u2010dimensional fields. To solve the problem, the first additional modulation preceding the transmitting medium is introduced in the scheme. Then the spectrum of spatial frequencies is formed by the optical system. The second additional spatial modulation is applied either in the optical system plane (the first variant of the scheme) or in the plane of spatial frequencies formed by the optical system (the second variant). A separate optical system is used for registration in the plane of spatial frequencies in the first variant of the scheme and in the image plane in the second variant. The intensity distributions obtained make it possible to solve the problem.",
"genre": "article",
"id": "sg:pub.10.1023/a:1017995902937",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1091852",
"issn": [
"1071-2836",
"1573-8760"
],
"name": "Journal of Russian Laser Research",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "22"
}
],
"keywords": [
"two\u2010dimensional optical fields",
"amplitude-phase structure",
"optical field",
"optical system",
"intensity distribution",
"two-dimensional intensity distribution",
"additional spatial modulation",
"spread function",
"separate optical system",
"optical scheme",
"light propagates",
"spatial frequency",
"disturbing medium",
"two-dimensional field",
"two-dimensional structure",
"additional modulation",
"amplitude-phase characteristics",
"system plane",
"phase information",
"phase problem",
"image plane",
"spatial modulation",
"complex transfer function",
"transmitting medium",
"additional modulators",
"plane",
"field",
"optics",
"spectra",
"structure",
"transfer function",
"propagates",
"frequency",
"modulation",
"transfer",
"modulator",
"distribution",
"images",
"scheme",
"transmit images",
"distance",
"first variant",
"medium",
"system",
"function",
"second variant",
"problem",
"applications",
"convolution",
"method",
"effect",
"solution",
"characteristics",
"registration",
"complex transfer",
"form",
"information",
"idea",
"analysis",
"variants",
"course"
],
"name": "How to Determine the Amplitude-Phase Structure of a 2D Optical Field and a 2D Complex Transfer Function, with the Effect of the Medium Described by Convolution",
"pagination": "306-323",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1038022899"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/a:1017995902937"
]
}
],
"sameAs": [
"https://doi.org/10.1023/a:1017995902937",
"https://app.dimensions.ai/details/publication/pub.1038022899"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:21",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_332.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1023/a:1017995902937"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1017995902937'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1017995902937'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1017995902937'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1017995902937'
This table displays all metadata directly associated to this object as RDF triples.
156 TRIPLES
22 PREDICATES
91 URIs
79 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1023/a:1017995902937 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | N97dbce8e09ea496ea240b671e993f049 |
4 | ″ | schema:citation | sg:pub.10.1007/bf02508741 |
5 | ″ | ″ | sg:pub.10.1007/bf03380166 |
6 | ″ | ″ | sg:pub.10.1007/bf03380173 |
7 | ″ | ″ | sg:pub.10.1023/a:1009588528617 |
8 | ″ | schema:datePublished | 2001-07 |
9 | ″ | schema:datePublishedReg | 2001-07-01 |
10 | ″ | schema:description | We consider the solution to the phase problem in optics in application to registration and analysis of the amplitude–phase structure of two‐dimensional optical fields that form or transmit images, as well as the amplitude–phase structure of transfer and spread functions of media, in which light propagates, or those of systems that form fields or images. The idea of our method is to introduce two additional modulators that visualize phase information. We consider two variants of optical schemes designed for analyzing the amplitude‐phase characteristics of two‐dimensional optical fields as well as two‐dimensional complex transfer and spread functions. These schemes are special because the two‐dimensional structure of the fields is transmitted at a distance in a disturbing medium or system and four independent two‐dimensional intensity distributions are to be registered in the course of processing the two‐dimensional fields. To solve the problem, the first additional modulation preceding the transmitting medium is introduced in the scheme. Then the spectrum of spatial frequencies is formed by the optical system. The second additional spatial modulation is applied either in the optical system plane (the first variant of the scheme) or in the plane of spatial frequencies formed by the optical system (the second variant). A separate optical system is used for registration in the plane of spatial frequencies in the first variant of the scheme and in the image plane in the second variant. The intensity distributions obtained make it possible to solve the problem. |
11 | ″ | schema:genre | article |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | N2c77cd1858944a14b56dcf14f9dfe461 |
15 | ″ | ″ | N5f788c6cf3da4f6aa93cc42e0335066d |
16 | ″ | ″ | sg:journal.1091852 |
17 | ″ | schema:keywords | additional modulation |
18 | ″ | ″ | additional modulators |
19 | ″ | ″ | additional spatial modulation |
20 | ″ | ″ | amplitude-phase characteristics |
21 | ″ | ″ | amplitude-phase structure |
22 | ″ | ″ | analysis |
23 | ″ | ″ | applications |
24 | ″ | ″ | characteristics |
25 | ″ | ″ | complex transfer |
26 | ″ | ″ | complex transfer function |
27 | ″ | ″ | convolution |
28 | ″ | ″ | course |
29 | ″ | ″ | distance |
30 | ″ | ″ | distribution |
31 | ″ | ″ | disturbing medium |
32 | ″ | ″ | effect |
33 | ″ | ″ | field |
34 | ″ | ″ | first variant |
35 | ″ | ″ | form |
36 | ″ | ″ | frequency |
37 | ″ | ″ | function |
38 | ″ | ″ | idea |
39 | ″ | ″ | image plane |
40 | ″ | ″ | images |
41 | ″ | ″ | information |
42 | ″ | ″ | intensity distribution |
43 | ″ | ″ | light propagates |
44 | ″ | ″ | medium |
45 | ″ | ″ | method |
46 | ″ | ″ | modulation |
47 | ″ | ″ | modulator |
48 | ″ | ″ | optical field |
49 | ″ | ″ | optical scheme |
50 | ″ | ″ | optical system |
51 | ″ | ″ | optics |
52 | ″ | ″ | phase information |
53 | ″ | ″ | phase problem |
54 | ″ | ″ | plane |
55 | ″ | ″ | problem |
56 | ″ | ″ | propagates |
57 | ″ | ″ | registration |
58 | ″ | ″ | scheme |
59 | ″ | ″ | second variant |
60 | ″ | ″ | separate optical system |
61 | ″ | ″ | solution |
62 | ″ | ″ | spatial frequency |
63 | ″ | ″ | spatial modulation |
64 | ″ | ″ | spectra |
65 | ″ | ″ | spread function |
66 | ″ | ″ | structure |
67 | ″ | ″ | system |
68 | ″ | ″ | system plane |
69 | ″ | ″ | transfer |
70 | ″ | ″ | transfer function |
71 | ″ | ″ | transmit images |
72 | ″ | ″ | transmitting medium |
73 | ″ | ″ | two-dimensional field |
74 | ″ | ″ | two-dimensional intensity distribution |
75 | ″ | ″ | two-dimensional structure |
76 | ″ | ″ | two‐dimensional optical fields |
77 | ″ | ″ | variants |
78 | ″ | schema:name | How to Determine the Amplitude-Phase Structure of a 2D Optical Field and a 2D Complex Transfer Function, with the Effect of the Medium Described by Convolution |
79 | ″ | schema:pagination | 306-323 |
80 | ″ | schema:productId | N19d0473beaf7479b82256d8361ac3d05 |
81 | ″ | ″ | N353b565807b04c68ae0ad0bea9d4cbfb |
82 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038022899 |
83 | ″ | ″ | https://doi.org/10.1023/a:1017995902937 |
84 | ″ | schema:sdDatePublished | 2022-05-20T07:21 |
85 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
86 | ″ | schema:sdPublisher | N879de1990ab146188f0db1dbf141d30b |
87 | ″ | schema:url | https://doi.org/10.1023/a:1017995902937 |
88 | ″ | sgo:license | sg:explorer/license/ |
89 | ″ | sgo:sdDataset | articles |
90 | ″ | rdf:type | schema:ScholarlyArticle |
91 | N19d0473beaf7479b82256d8361ac3d05 | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1038022899 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | N2c77cd1858944a14b56dcf14f9dfe461 | schema:issueNumber | 4 |
95 | ″ | rdf:type | schema:PublicationIssue |
96 | N353b565807b04c68ae0ad0bea9d4cbfb | schema:name | doi |
97 | ″ | schema:value | 10.1023/a:1017995902937 |
98 | ″ | rdf:type | schema:PropertyValue |
99 | N5f788c6cf3da4f6aa93cc42e0335066d | schema:volumeNumber | 22 |
100 | ″ | rdf:type | schema:PublicationVolume |
101 | N6844a3a212ed457eb3d33a6b6c504c0a | rdf:first | sg:person.012735437371.46 |
102 | ″ | rdf:rest | Nc312490286d64e4fa17397fe2317cddf |
103 | N879de1990ab146188f0db1dbf141d30b | schema:name | Springer Nature - SN SciGraph project |
104 | ″ | rdf:type | schema:Organization |
105 | N97dbce8e09ea496ea240b671e993f049 | rdf:first | sg:person.016340465555.29 |
106 | ″ | rdf:rest | N6844a3a212ed457eb3d33a6b6c504c0a |
107 | Na78caa5f70824bff9c64fd15549563aa | rdf:first | sg:person.013653363167.80 |
108 | ″ | rdf:rest | rdf:nil |
109 | Nc312490286d64e4fa17397fe2317cddf | rdf:first | sg:person.013075204245.72 |
110 | ″ | rdf:rest | Na78caa5f70824bff9c64fd15549563aa |
111 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
112 | ″ | schema:name | Physical Sciences |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
115 | ″ | schema:name | Other Physical Sciences |
116 | ″ | rdf:type | schema:DefinedTerm |
117 | sg:journal.1091852 | schema:issn | 1071-2836 |
118 | ″ | ″ | 1573-8760 |
119 | ″ | schema:name | Journal of Russian Laser Research |
120 | ″ | schema:publisher | Springer Nature |
121 | ″ | rdf:type | schema:Periodical |
122 | sg:person.012735437371.46 | schema:affiliation | grid-institutes:grid.425806.d |
123 | ″ | schema:familyName | Mironova |
124 | ″ | schema:givenName | T. V. |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012735437371.46 |
126 | ″ | rdf:type | schema:Person |
127 | sg:person.013075204245.72 | schema:affiliation | grid-institutes:grid.425806.d |
128 | ″ | schema:familyName | Zelepukina |
129 | ″ | schema:givenName | E. V. |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075204245.72 |
131 | ″ | rdf:type | schema:Person |
132 | sg:person.013653363167.80 | schema:affiliation | grid-institutes:grid.425806.d |
133 | ″ | schema:familyName | Zubov |
134 | ″ | schema:givenName | V. A. |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013653363167.80 |
136 | ″ | rdf:type | schema:Person |
137 | sg:person.016340465555.29 | schema:affiliation | grid-institutes:grid.425806.d |
138 | ″ | schema:familyName | Merkin |
139 | ″ | schema:givenName | A. A. |
140 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016340465555.29 |
141 | ″ | rdf:type | schema:Person |
142 | sg:pub.10.1007/bf02508741 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035507323 |
143 | ″ | ″ | https://doi.org/10.1007/bf02508741 |
144 | ″ | rdf:type | schema:CreativeWork |
145 | sg:pub.10.1007/bf03380166 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1084517109 |
146 | ″ | ″ | https://doi.org/10.1007/bf03380166 |
147 | ″ | rdf:type | schema:CreativeWork |
148 | sg:pub.10.1007/bf03380173 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1084517116 |
149 | ″ | ″ | https://doi.org/10.1007/bf03380173 |
150 | ″ | rdf:type | schema:CreativeWork |
151 | sg:pub.10.1023/a:1009588528617 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032483361 |
152 | ″ | ″ | https://doi.org/10.1023/a:1009588528617 |
153 | ″ | rdf:type | schema:CreativeWork |
154 | grid-institutes:grid.425806.d | schema:alternateName | Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia |
155 | ″ | schema:name | Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia |
156 | ″ | rdf:type | schema:Organization |