How to Determine the Amplitude-Phase Structure of a 2D Optical Field and a 2D Complex Transfer Function, with the Effect ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-07

AUTHORS

A. A. Merkin, T. V. Mironova, E. V. Zelepukina, V. A. Zubov

ABSTRACT

We consider the solution to the phase problem in optics in application to registration and analysis of the amplitude–phase structure of two‐dimensional optical fields that form or transmit images, as well as the amplitude–phase structure of transfer and spread functions of media, in which light propagates, or those of systems that form fields or images. The idea of our method is to introduce two additional modulators that visualize phase information. We consider two variants of optical schemes designed for analyzing the amplitude‐phase characteristics of two‐dimensional optical fields as well as two‐dimensional complex transfer and spread functions. These schemes are special because the two‐dimensional structure of the fields is transmitted at a distance in a disturbing medium or system and four independent two‐dimensional intensity distributions are to be registered in the course of processing the two‐dimensional fields. To solve the problem, the first additional modulation preceding the transmitting medium is introduced in the scheme. Then the spectrum of spatial frequencies is formed by the optical system. The second additional spatial modulation is applied either in the optical system plane (the first variant of the scheme) or in the plane of spatial frequencies formed by the optical system (the second variant). A separate optical system is used for registration in the plane of spatial frequencies in the first variant of the scheme and in the image plane in the second variant. The intensity distributions obtained make it possible to solve the problem. More... »

PAGES

306-323

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1017995902937

DOI

http://dx.doi.org/10.1023/a:1017995902937

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038022899


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Merkin", 
        "givenName": "A. A.", 
        "id": "sg:person.016340465555.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016340465555.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mironova", 
        "givenName": "T. V.", 
        "id": "sg:person.012735437371.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012735437371.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zelepukina", 
        "givenName": "E. V.", 
        "id": "sg:person.013075204245.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075204245.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zubov", 
        "givenName": "V. A.", 
        "id": "sg:person.013653363167.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013653363167.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1009588528617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032483361", 
          "https://doi.org/10.1023/a:1009588528617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03380173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084517116", 
          "https://doi.org/10.1007/bf03380173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03380166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084517109", 
          "https://doi.org/10.1007/bf03380166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02508741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035507323", 
          "https://doi.org/10.1007/bf02508741"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-07", 
    "datePublishedReg": "2001-07-01", 
    "description": "We consider the solution to the phase problem in optics in application to registration and analysis of the amplitude\u2013phase structure of two\u2010dimensional optical fields that form or transmit images, as well as the amplitude\u2013phase structure of transfer and spread functions of media, in which light propagates, or those of systems that form fields or images. The idea of our method is to introduce two additional modulators that visualize phase information. We consider two variants of optical schemes designed for analyzing the amplitude\u2010phase characteristics of two\u2010dimensional optical fields as well as two\u2010dimensional complex transfer and spread functions. These schemes are special because the two\u2010dimensional structure of the fields is transmitted at a distance in a disturbing medium or system and four independent two\u2010dimensional intensity distributions are to be registered in the course of processing the two\u2010dimensional fields. To solve the problem, the first additional modulation preceding the transmitting medium is introduced in the scheme. Then the spectrum of spatial frequencies is formed by the optical system. The second additional spatial modulation is applied either in the optical system plane (the first variant of the scheme) or in the plane of spatial frequencies formed by the optical system (the second variant). A separate optical system is used for registration in the plane of spatial frequencies in the first variant of the scheme and in the image plane in the second variant. The intensity distributions obtained make it possible to solve the problem.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1017995902937", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1091852", 
        "issn": [
          "1071-2836", 
          "1573-8760"
        ], 
        "name": "Journal of Russian Laser Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "two\u2010dimensional optical fields", 
      "amplitude-phase structure", 
      "optical field", 
      "optical system", 
      "intensity distribution", 
      "two-dimensional intensity distribution", 
      "additional spatial modulation", 
      "spread function", 
      "separate optical system", 
      "optical scheme", 
      "light propagates", 
      "spatial frequency", 
      "disturbing medium", 
      "two-dimensional field", 
      "two-dimensional structure", 
      "additional modulation", 
      "amplitude-phase characteristics", 
      "system plane", 
      "phase information", 
      "phase problem", 
      "image plane", 
      "spatial modulation", 
      "complex transfer function", 
      "transmitting medium", 
      "additional modulators", 
      "plane", 
      "field", 
      "optics", 
      "spectra", 
      "structure", 
      "transfer function", 
      "propagates", 
      "frequency", 
      "modulation", 
      "transfer", 
      "modulator", 
      "distribution", 
      "images", 
      "scheme", 
      "transmit images", 
      "distance", 
      "first variant", 
      "medium", 
      "system", 
      "function", 
      "second variant", 
      "problem", 
      "applications", 
      "convolution", 
      "method", 
      "effect", 
      "solution", 
      "characteristics", 
      "registration", 
      "complex transfer", 
      "form", 
      "information", 
      "idea", 
      "analysis", 
      "variants", 
      "course"
    ], 
    "name": "How to Determine the Amplitude-Phase Structure of a 2D Optical Field and a 2D Complex Transfer Function, with the Effect of the Medium Described by Convolution", 
    "pagination": "306-323", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038022899"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1017995902937"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1017995902937", 
      "https://app.dimensions.ai/details/publication/pub.1038022899"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_332.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1017995902937"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1017995902937'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1017995902937'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1017995902937'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1017995902937'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      22 PREDICATES      91 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1017995902937 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N97dbce8e09ea496ea240b671e993f049
4 schema:citation sg:pub.10.1007/bf02508741
5 sg:pub.10.1007/bf03380166
6 sg:pub.10.1007/bf03380173
7 sg:pub.10.1023/a:1009588528617
8 schema:datePublished 2001-07
9 schema:datePublishedReg 2001-07-01
10 schema:description We consider the solution to the phase problem in optics in application to registration and analysis of the amplitude–phase structure of two‐dimensional optical fields that form or transmit images, as well as the amplitude–phase structure of transfer and spread functions of media, in which light propagates, or those of systems that form fields or images. The idea of our method is to introduce two additional modulators that visualize phase information. We consider two variants of optical schemes designed for analyzing the amplitude‐phase characteristics of two‐dimensional optical fields as well as two‐dimensional complex transfer and spread functions. These schemes are special because the two‐dimensional structure of the fields is transmitted at a distance in a disturbing medium or system and four independent two‐dimensional intensity distributions are to be registered in the course of processing the two‐dimensional fields. To solve the problem, the first additional modulation preceding the transmitting medium is introduced in the scheme. Then the spectrum of spatial frequencies is formed by the optical system. The second additional spatial modulation is applied either in the optical system plane (the first variant of the scheme) or in the plane of spatial frequencies formed by the optical system (the second variant). A separate optical system is used for registration in the plane of spatial frequencies in the first variant of the scheme and in the image plane in the second variant. The intensity distributions obtained make it possible to solve the problem.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N2c77cd1858944a14b56dcf14f9dfe461
15 N5f788c6cf3da4f6aa93cc42e0335066d
16 sg:journal.1091852
17 schema:keywords additional modulation
18 additional modulators
19 additional spatial modulation
20 amplitude-phase characteristics
21 amplitude-phase structure
22 analysis
23 applications
24 characteristics
25 complex transfer
26 complex transfer function
27 convolution
28 course
29 distance
30 distribution
31 disturbing medium
32 effect
33 field
34 first variant
35 form
36 frequency
37 function
38 idea
39 image plane
40 images
41 information
42 intensity distribution
43 light propagates
44 medium
45 method
46 modulation
47 modulator
48 optical field
49 optical scheme
50 optical system
51 optics
52 phase information
53 phase problem
54 plane
55 problem
56 propagates
57 registration
58 scheme
59 second variant
60 separate optical system
61 solution
62 spatial frequency
63 spatial modulation
64 spectra
65 spread function
66 structure
67 system
68 system plane
69 transfer
70 transfer function
71 transmit images
72 transmitting medium
73 two-dimensional field
74 two-dimensional intensity distribution
75 two-dimensional structure
76 two‐dimensional optical fields
77 variants
78 schema:name How to Determine the Amplitude-Phase Structure of a 2D Optical Field and a 2D Complex Transfer Function, with the Effect of the Medium Described by Convolution
79 schema:pagination 306-323
80 schema:productId N19d0473beaf7479b82256d8361ac3d05
81 N353b565807b04c68ae0ad0bea9d4cbfb
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038022899
83 https://doi.org/10.1023/a:1017995902937
84 schema:sdDatePublished 2022-05-20T07:21
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N879de1990ab146188f0db1dbf141d30b
87 schema:url https://doi.org/10.1023/a:1017995902937
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N19d0473beaf7479b82256d8361ac3d05 schema:name dimensions_id
92 schema:value pub.1038022899
93 rdf:type schema:PropertyValue
94 N2c77cd1858944a14b56dcf14f9dfe461 schema:issueNumber 4
95 rdf:type schema:PublicationIssue
96 N353b565807b04c68ae0ad0bea9d4cbfb schema:name doi
97 schema:value 10.1023/a:1017995902937
98 rdf:type schema:PropertyValue
99 N5f788c6cf3da4f6aa93cc42e0335066d schema:volumeNumber 22
100 rdf:type schema:PublicationVolume
101 N6844a3a212ed457eb3d33a6b6c504c0a rdf:first sg:person.012735437371.46
102 rdf:rest Nc312490286d64e4fa17397fe2317cddf
103 N879de1990ab146188f0db1dbf141d30b schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N97dbce8e09ea496ea240b671e993f049 rdf:first sg:person.016340465555.29
106 rdf:rest N6844a3a212ed457eb3d33a6b6c504c0a
107 Na78caa5f70824bff9c64fd15549563aa rdf:first sg:person.013653363167.80
108 rdf:rest rdf:nil
109 Nc312490286d64e4fa17397fe2317cddf rdf:first sg:person.013075204245.72
110 rdf:rest Na78caa5f70824bff9c64fd15549563aa
111 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
112 schema:name Physical Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
115 schema:name Other Physical Sciences
116 rdf:type schema:DefinedTerm
117 sg:journal.1091852 schema:issn 1071-2836
118 1573-8760
119 schema:name Journal of Russian Laser Research
120 schema:publisher Springer Nature
121 rdf:type schema:Periodical
122 sg:person.012735437371.46 schema:affiliation grid-institutes:grid.425806.d
123 schema:familyName Mironova
124 schema:givenName T. V.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012735437371.46
126 rdf:type schema:Person
127 sg:person.013075204245.72 schema:affiliation grid-institutes:grid.425806.d
128 schema:familyName Zelepukina
129 schema:givenName E. V.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075204245.72
131 rdf:type schema:Person
132 sg:person.013653363167.80 schema:affiliation grid-institutes:grid.425806.d
133 schema:familyName Zubov
134 schema:givenName V. A.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013653363167.80
136 rdf:type schema:Person
137 sg:person.016340465555.29 schema:affiliation grid-institutes:grid.425806.d
138 schema:familyName Merkin
139 schema:givenName A. A.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016340465555.29
141 rdf:type schema:Person
142 sg:pub.10.1007/bf02508741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035507323
143 https://doi.org/10.1007/bf02508741
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/bf03380166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084517109
146 https://doi.org/10.1007/bf03380166
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/bf03380173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084517116
149 https://doi.org/10.1007/bf03380173
150 rdf:type schema:CreativeWork
151 sg:pub.10.1023/a:1009588528617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032483361
152 https://doi.org/10.1023/a:1009588528617
153 rdf:type schema:CreativeWork
154 grid-institutes:grid.425806.d schema:alternateName Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia
155 schema:name Russian Academy of Sciences, P. N. Lebedev Physical Institute, Leninskii Pr. 53, 119991, Moscow, Russia
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...