Bayesian Semiparametric Regression Analysis of Multicategorical Time-Space Data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-03

AUTHORS

Ludwig Fahrmeir, Stefan Lang

ABSTRACT

We present a unified semiparametric Bayesian approach based on Markov random field priors for analyzing the dependence of multicategorical response variables on time, space and further covariates. The general model extends dynamic, or state space, models for categorical time series and longitudinal data by including spatial effects as well as nonlinear effects of metrical covariates in flexible semiparametric form. Trend and seasonal components, different types of covariates and spatial effects are all treated within the same general framework by assigning appropriate priors with different forms and degrees of smoothness. Inference is fully Bayesian and uses MCMC techniques for posterior analysis. The approach in this paper is based on latent semiparametric utility models and is particularly useful for probit models. The methods are illustrated by applications to unemployment data and a forest damage survey. More... »

PAGES

11-30

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1017904118167

DOI

http://dx.doi.org/10.1023/a:1017904118167

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022606299


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Statistics, University of Munich, Ludwigstrasse 33, D-80539, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fahrmeir", 
        "givenName": "Ludwig", 
        "id": "sg:person.0661512671.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661512671.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Department of Statistics, University of Munich, Ludwigstrasse 33, D-80539, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lang", 
        "givenName": "Stefan", 
        "id": "sg:person.010223676761.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010223676761.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/1467-9469.00141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016319904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02738594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024105408", 
          "https://doi.org/10.1007/bf02738594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02738594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024105408", 
          "https://doi.org/10.1007/bf02738594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0258(20000915/30)19:17/18<2555::aid-sim587>3.0.co;2-#", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027874064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00116466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041821886", 
          "https://doi.org/10.1007/bf00116466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0258(19980930)17:18<2045::aid-sim943>3.0.co;2-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044376229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9876.00229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045289617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9876.00229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045289617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1993.10476321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304405"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-03", 
    "datePublishedReg": "2001-03-01", 
    "description": "We present a unified semiparametric Bayesian approach based on Markov random field priors for analyzing the dependence of multicategorical response variables on time, space and further covariates. The general model extends dynamic, or state space, models for categorical time series and longitudinal data by including spatial effects as well as nonlinear effects of metrical covariates in flexible semiparametric form. Trend and seasonal components, different types of covariates and spatial effects are all treated within the same general framework by assigning appropriate priors with different forms and degrees of smoothness. Inference is fully Bayesian and uses MCMC techniques for posterior analysis. The approach in this paper is based on latent semiparametric utility models and is particularly useful for probit models. The methods are illustrated by applications to unemployment data and a forest damage survey.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1017904118167", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1041657", 
        "issn": [
          "0020-3157", 
          "1572-9052"
        ], 
        "name": "Annals of the Institute of Statistical Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "Bayesian Semiparametric Regression Analysis of Multicategorical Time-Space Data", 
    "pagination": "11-30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6bb33e415d6bf47781b3abcd5650438ab0edc9479cfbd7518ae2b6d270a836a6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1017904118167"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022606299"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1017904118167", 
      "https://app.dimensions.ai/details/publication/pub.1022606299"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1017904118167"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1017904118167'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1017904118167'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1017904118167'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1017904118167'


 

This table displays all metadata directly associated to this object as RDF triples.

91 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1017904118167 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author N7adc11ed331f449b8768b8209a8ce874
4 schema:citation sg:pub.10.1007/bf00116466
5 sg:pub.10.1007/bf02738594
6 https://doi.org/10.1002/(sici)1097-0258(19980930)17:18<2045::aid-sim943>3.0.co;2-p
7 https://doi.org/10.1002/1097-0258(20000915/30)19:17/18<2555::aid-sim587>3.0.co;2-#
8 https://doi.org/10.1080/01621459.1993.10476321
9 https://doi.org/10.1111/1467-9469.00141
10 https://doi.org/10.1111/1467-9876.00229
11 schema:datePublished 2001-03
12 schema:datePublishedReg 2001-03-01
13 schema:description We present a unified semiparametric Bayesian approach based on Markov random field priors for analyzing the dependence of multicategorical response variables on time, space and further covariates. The general model extends dynamic, or state space, models for categorical time series and longitudinal data by including spatial effects as well as nonlinear effects of metrical covariates in flexible semiparametric form. Trend and seasonal components, different types of covariates and spatial effects are all treated within the same general framework by assigning appropriate priors with different forms and degrees of smoothness. Inference is fully Bayesian and uses MCMC techniques for posterior analysis. The approach in this paper is based on latent semiparametric utility models and is particularly useful for probit models. The methods are illustrated by applications to unemployment data and a forest damage survey.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N65dbd9de956043329cb1a793f06febac
18 Nf53fffb80dc945bf931b7bb38ee672bf
19 sg:journal.1041657
20 schema:name Bayesian Semiparametric Regression Analysis of Multicategorical Time-Space Data
21 schema:pagination 11-30
22 schema:productId N78588992dbd943b9935e21d9c3066905
23 N7b0e13030f744d0db10321ac8c3076f6
24 Nc689fec46f8d4b1aa8299cc65dae2ab8
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022606299
26 https://doi.org/10.1023/a:1017904118167
27 schema:sdDatePublished 2019-04-10T14:07
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N028bc7e7904e4f78942612afb5298abb
30 schema:url http://link.springer.com/10.1023/A:1017904118167
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N028bc7e7904e4f78942612afb5298abb schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N65dbd9de956043329cb1a793f06febac schema:volumeNumber 53
37 rdf:type schema:PublicationVolume
38 N67beffc71ad04816afdc713507d5d190 rdf:first sg:person.010223676761.81
39 rdf:rest rdf:nil
40 N78588992dbd943b9935e21d9c3066905 schema:name dimensions_id
41 schema:value pub.1022606299
42 rdf:type schema:PropertyValue
43 N7adc11ed331f449b8768b8209a8ce874 rdf:first sg:person.0661512671.36
44 rdf:rest N67beffc71ad04816afdc713507d5d190
45 N7b0e13030f744d0db10321ac8c3076f6 schema:name readcube_id
46 schema:value 6bb33e415d6bf47781b3abcd5650438ab0edc9479cfbd7518ae2b6d270a836a6
47 rdf:type schema:PropertyValue
48 Nc689fec46f8d4b1aa8299cc65dae2ab8 schema:name doi
49 schema:value 10.1023/a:1017904118167
50 rdf:type schema:PropertyValue
51 Nf53fffb80dc945bf931b7bb38ee672bf schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
54 schema:name Economics
55 rdf:type schema:DefinedTerm
56 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
57 schema:name Econometrics
58 rdf:type schema:DefinedTerm
59 sg:journal.1041657 schema:issn 0020-3157
60 1572-9052
61 schema:name Annals of the Institute of Statistical Mathematics
62 rdf:type schema:Periodical
63 sg:person.010223676761.81 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
64 schema:familyName Lang
65 schema:givenName Stefan
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010223676761.81
67 rdf:type schema:Person
68 sg:person.0661512671.36 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
69 schema:familyName Fahrmeir
70 schema:givenName Ludwig
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661512671.36
72 rdf:type schema:Person
73 sg:pub.10.1007/bf00116466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041821886
74 https://doi.org/10.1007/bf00116466
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf02738594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024105408
77 https://doi.org/10.1007/bf02738594
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1002/(sici)1097-0258(19980930)17:18<2045::aid-sim943>3.0.co;2-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1044376229
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1002/1097-0258(20000915/30)19:17/18<2555::aid-sim587>3.0.co;2-# schema:sameAs https://app.dimensions.ai/details/publication/pub.1027874064
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1080/01621459.1993.10476321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304405
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1111/1467-9469.00141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016319904
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1111/1467-9876.00229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045289617
88 rdf:type schema:CreativeWork
89 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
90 schema:name Department of Statistics, University of Munich, Ludwigstrasse 33, D-80539, Munich, Germany
91 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...