Spiral Structures and Chaotic Scattering of Coorbital Satellites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-04

AUTHORS

Jacques Henrard, Juan F. Navarro

ABSTRACT

The fractal nature of the transitions between two sets of orbits separated by heteroclinic or homoclinic orbits is well known. We analyze in detail this phenomenon in Hill's problem where one set of orbits corresponds to coorbital satellites exchanging semi-major axis after close encounter (horse-shoe orbits) and the other corresponds to orbits which do not exchange semi-major axis (passing-by orbits). With the help of a normalized approximation of the vicinity of unstable periodic orbits, we show that the fractal structure is intimately tied to a special spiral structure of the Poincaré maps. We show that each basin is composed of a few ‘well behaved’ areas and of an infinity of intertwined tongues and subtongues winding around them. This behaviour is generic and is likely to be present in large classes of chaotic scattering problems. More... »

PAGES

297-314

References to SciGraph publications

  • 1986-01. Series expansions for encounter-type solutions of Hill's problem in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1974-04. Canonical forms for symplectic and Hamiltonian matrices in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1017536931038

    DOI

    http://dx.doi.org/10.1023/a:1017536931038

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1034259419


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Namur", 
              "id": "https://www.grid.ac/institutes/grid.6520.1", 
              "name": [
                "D\u00e9partement de Math\u00e9matique, University of Namur, 8, Rempart de la Vierge, B-5000, Namur, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Henrard", 
            "givenName": "Jacques", 
            "id": "sg:person.012411554565.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411554565.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Alicante", 
              "id": "https://www.grid.ac/institutes/grid.5268.9", 
              "name": [
                "Departamento de Matem\u00e1tica A., University of Alicante, P.O. Box 99, E-03080, Alicante, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Navarro", 
            "givenName": "Juan F.", 
            "id": "sg:person.016110300305.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016110300305.97"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/b978-1-4831-9924-5.50007-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000763734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01234287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011863099", 
              "https://doi.org/10.1007/bf01234287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01234287", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011863099", 
              "https://doi.org/10.1007/bf01234287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(90)90114-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041306331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0167-2789(90)90114-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041306331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0019-1035(86)90089-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047480827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0019-1035(86)90089-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047480827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01260514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051664447", 
              "https://doi.org/10.1007/bf01260514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01260514", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051664447", 
              "https://doi.org/10.1007/bf01260514"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2808369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057870309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.450336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058028354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/110811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058449390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2369430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069896557"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-04", 
        "datePublishedReg": "2001-04-01", 
        "description": "The fractal nature of the transitions between two sets of orbits separated by heteroclinic or homoclinic orbits is well known. We analyze in detail this phenomenon in Hill's problem where one set of orbits corresponds to coorbital satellites exchanging semi-major axis after close encounter (horse-shoe orbits) and the other corresponds to orbits which do not exchange semi-major axis (passing-by orbits). With the help of a normalized approximation of the vicinity of unstable periodic orbits, we show that the fractal structure is intimately tied to a special spiral structure of the Poincar\u00e9 maps. We show that each basin is composed of a few \u2018well behaved\u2019 areas and of an infinity of intertwined tongues and subtongues winding around them. This behaviour is generic and is likely to be present in large classes of chaotic scattering problems.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1017536931038", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "79"
          }
        ], 
        "name": "Spiral Structures and Chaotic Scattering of Coorbital Satellites", 
        "pagination": "297-314", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a332d6e74b4f35980c7137141116a82b3e258f299ef634ed322f1d1c6b05ecfc"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1017536931038"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1034259419"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1017536931038", 
          "https://app.dimensions.ai/details/publication/pub.1034259419"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000506.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023/A:1017536931038"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1017536931038'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1017536931038'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1017536931038'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1017536931038'


     

    This table displays all metadata directly associated to this object as RDF triples.

    100 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1017536931038 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Na2828995e2a445028d1739b7f14edb25
    4 schema:citation sg:pub.10.1007/bf01234287
    5 sg:pub.10.1007/bf01260514
    6 https://doi.org/10.1016/0019-1035(86)90089-8
    7 https://doi.org/10.1016/0167-2789(90)90114-5
    8 https://doi.org/10.1016/b978-1-4831-9924-5.50007-4
    9 https://doi.org/10.1063/1.2808369
    10 https://doi.org/10.1063/1.450336
    11 https://doi.org/10.1086/110811
    12 https://doi.org/10.2307/2369430
    13 schema:datePublished 2001-04
    14 schema:datePublishedReg 2001-04-01
    15 schema:description The fractal nature of the transitions between two sets of orbits separated by heteroclinic or homoclinic orbits is well known. We analyze in detail this phenomenon in Hill's problem where one set of orbits corresponds to coorbital satellites exchanging semi-major axis after close encounter (horse-shoe orbits) and the other corresponds to orbits which do not exchange semi-major axis (passing-by orbits). With the help of a normalized approximation of the vicinity of unstable periodic orbits, we show that the fractal structure is intimately tied to a special spiral structure of the Poincaré maps. We show that each basin is composed of a few ‘well behaved’ areas and of an infinity of intertwined tongues and subtongues winding around them. This behaviour is generic and is likely to be present in large classes of chaotic scattering problems.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N18521448be174aebb51655727cf28634
    20 Nee017f076e6041bd9fec0d2b194d101e
    21 sg:journal.1136436
    22 schema:name Spiral Structures and Chaotic Scattering of Coorbital Satellites
    23 schema:pagination 297-314
    24 schema:productId N96207d52425b4a988f36609a65cacf3b
    25 N9a937de5af3643358530a776ba368b59
    26 Na12fccf424b1478f8b02c06d0e50d2eb
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034259419
    28 https://doi.org/10.1023/a:1017536931038
    29 schema:sdDatePublished 2019-04-10T15:50
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher Nc431f35f09554707bc138dcedb04d313
    32 schema:url http://link.springer.com/10.1023/A:1017536931038
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N18521448be174aebb51655727cf28634 schema:volumeNumber 79
    37 rdf:type schema:PublicationVolume
    38 N96207d52425b4a988f36609a65cacf3b schema:name dimensions_id
    39 schema:value pub.1034259419
    40 rdf:type schema:PropertyValue
    41 N9a937de5af3643358530a776ba368b59 schema:name readcube_id
    42 schema:value a332d6e74b4f35980c7137141116a82b3e258f299ef634ed322f1d1c6b05ecfc
    43 rdf:type schema:PropertyValue
    44 Na12fccf424b1478f8b02c06d0e50d2eb schema:name doi
    45 schema:value 10.1023/a:1017536931038
    46 rdf:type schema:PropertyValue
    47 Na2828995e2a445028d1739b7f14edb25 rdf:first sg:person.012411554565.81
    48 rdf:rest Ne7716d534d174b5cb9504c4e0bdaf5f0
    49 Nc431f35f09554707bc138dcedb04d313 schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 Ne7716d534d174b5cb9504c4e0bdaf5f0 rdf:first sg:person.016110300305.97
    52 rdf:rest rdf:nil
    53 Nee017f076e6041bd9fec0d2b194d101e schema:issueNumber 4
    54 rdf:type schema:PublicationIssue
    55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Mathematical Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Pure Mathematics
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1136436 schema:issn 0008-8714
    62 0923-2958
    63 schema:name Celestial Mechanics and Dynamical Astronomy
    64 rdf:type schema:Periodical
    65 sg:person.012411554565.81 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
    66 schema:familyName Henrard
    67 schema:givenName Jacques
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411554565.81
    69 rdf:type schema:Person
    70 sg:person.016110300305.97 schema:affiliation https://www.grid.ac/institutes/grid.5268.9
    71 schema:familyName Navarro
    72 schema:givenName Juan F.
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016110300305.97
    74 rdf:type schema:Person
    75 sg:pub.10.1007/bf01234287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011863099
    76 https://doi.org/10.1007/bf01234287
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/bf01260514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051664447
    79 https://doi.org/10.1007/bf01260514
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/0019-1035(86)90089-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047480827
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/0167-2789(90)90114-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041306331
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/b978-1-4831-9924-5.50007-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000763734
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1063/1.2808369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057870309
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1063/1.450336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058028354
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1086/110811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058449390
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.2307/2369430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069896557
    94 rdf:type schema:CreativeWork
    95 https://www.grid.ac/institutes/grid.5268.9 schema:alternateName University of Alicante
    96 schema:name Departamento de Matemática A., University of Alicante, P.O. Box 99, E-03080, Alicante, Spain
    97 rdf:type schema:Organization
    98 https://www.grid.ac/institutes/grid.6520.1 schema:alternateName University of Namur
    99 schema:name Département de Mathématique, University of Namur, 8, Rempart de la Vierge, B-5000, Namur, Belgium
    100 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...