System of Differential Equations for the Lattice Problems of the Percolation Theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-05

AUTHORS

P. S. Grinchuk

ABSTRACT

A model of cluster formation in the percolation system is proposed. On its basis a system of differential equations for finite clusters and a differential equation for and infinite cluster are obtained. The solutions of these equations for several limiting cases are investigated. A method of approximate closure of the equation for an infinite cluster using a system of equations for a number of finite clusters is developed, and an expression for the percolation probability in the entire range of change of the part of the conducting bonds in the system is obtained by means of this method. More... »

PAGES

596-612

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1016795908533

DOI

http://dx.doi.org/10.1023/a:1016795908533

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008093504


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Academy of Sciences of Belarus", 
          "id": "https://www.grid.ac/institutes/grid.410300.6", 
          "name": [
            "National Academy of Sciences of Belarus, Academic Scientific Complex \u201cA. V. Luikov Heat and Mass Transfer Institute,\u201d, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grinchuk", 
        "givenName": "P. S.", 
        "id": "sg:person.01037416256.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037416256.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0378-4371(91)90299-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015305941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(91)90299-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015305941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/184509a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016161958", 
          "https://doi.org/10.1038/184509a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(74)90029-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032536411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(74)90029-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032536411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.7059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033987505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.7059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033987505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.3878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043400905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.3878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043400905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.122.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060424143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.122.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060424143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.126.949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060425536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.126.949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060425536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufnr.0117.197511a.0401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071216146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufnr.0150.198610b.0221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071217869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufnr.0170.200008b.0831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071219621"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-05", 
    "datePublishedReg": "2001-05-01", 
    "description": "A model of cluster formation in the percolation system is proposed. On its basis a system of differential equations for finite clusters and a differential equation for and infinite cluster are obtained. The solutions of these equations for several limiting cases are investigated. A method of approximate closure of the equation for an infinite cluster using a system of equations for a number of finite clusters is developed, and an expression for the percolation probability in the entire range of change of the part of the conducting bonds in the system is obtained by means of this method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1016795908533", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313809", 
        "issn": [
          "1062-0125", 
          "1573-871X"
        ], 
        "name": "Journal of Engineering Physics and Thermophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "74"
      }
    ], 
    "name": "System of Differential Equations for the Lattice Problems of the Percolation Theory", 
    "pagination": "596-612", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "268ec60354eefc082046f078a8045d22c69d3e0ff0b6c5353491cf8dc4375513"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1016795908533"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008093504"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1016795908533", 
      "https://app.dimensions.ai/details/publication/pub.1008093504"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1016795908533"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1016795908533'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1016795908533'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1016795908533'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1016795908533'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1016795908533 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Na700794183cc46e38cc3ba14ed19addf
4 schema:citation sg:pub.10.1038/184509a0
5 https://doi.org/10.1016/0370-1573(74)90029-5
6 https://doi.org/10.1016/0378-4371(91)90299-r
7 https://doi.org/10.1103/physrev.122.77
8 https://doi.org/10.1103/physrev.126.949
9 https://doi.org/10.1103/physreve.55.3878
10 https://doi.org/10.1103/physreve.62.7059
11 https://doi.org/10.3367/ufnr.0117.197511a.0401
12 https://doi.org/10.3367/ufnr.0150.198610b.0221
13 https://doi.org/10.3367/ufnr.0170.200008b.0831
14 schema:datePublished 2001-05
15 schema:datePublishedReg 2001-05-01
16 schema:description A model of cluster formation in the percolation system is proposed. On its basis a system of differential equations for finite clusters and a differential equation for and infinite cluster are obtained. The solutions of these equations for several limiting cases are investigated. A method of approximate closure of the equation for an infinite cluster using a system of equations for a number of finite clusters is developed, and an expression for the percolation probability in the entire range of change of the part of the conducting bonds in the system is obtained by means of this method.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N08b561b7d7ee43f7b9eadb7b8b45f22c
21 Nedf72152b66d4960973a9764ce937734
22 sg:journal.1313809
23 schema:name System of Differential Equations for the Lattice Problems of the Percolation Theory
24 schema:pagination 596-612
25 schema:productId N06b6a7784a9144f6b60bbdf0ccf610c3
26 N481e9d19a8e34302950d48d7751c2331
27 N719299f6b03f4e89ac79a399c8465753
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008093504
29 https://doi.org/10.1023/a:1016795908533
30 schema:sdDatePublished 2019-04-10T21:35
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N9828599da1a944dd964cf56507763882
33 schema:url http://link.springer.com/10.1023/A:1016795908533
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N06b6a7784a9144f6b60bbdf0ccf610c3 schema:name doi
38 schema:value 10.1023/a:1016795908533
39 rdf:type schema:PropertyValue
40 N08b561b7d7ee43f7b9eadb7b8b45f22c schema:issueNumber 3
41 rdf:type schema:PublicationIssue
42 N481e9d19a8e34302950d48d7751c2331 schema:name readcube_id
43 schema:value 268ec60354eefc082046f078a8045d22c69d3e0ff0b6c5353491cf8dc4375513
44 rdf:type schema:PropertyValue
45 N719299f6b03f4e89ac79a399c8465753 schema:name dimensions_id
46 schema:value pub.1008093504
47 rdf:type schema:PropertyValue
48 N9828599da1a944dd964cf56507763882 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Na700794183cc46e38cc3ba14ed19addf rdf:first sg:person.01037416256.50
51 rdf:rest rdf:nil
52 Nedf72152b66d4960973a9764ce937734 schema:volumeNumber 74
53 rdf:type schema:PublicationVolume
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
58 schema:name Numerical and Computational Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1313809 schema:issn 1062-0125
61 1573-871X
62 schema:name Journal of Engineering Physics and Thermophysics
63 rdf:type schema:Periodical
64 sg:person.01037416256.50 schema:affiliation https://www.grid.ac/institutes/grid.410300.6
65 schema:familyName Grinchuk
66 schema:givenName P. S.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037416256.50
68 rdf:type schema:Person
69 sg:pub.10.1038/184509a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016161958
70 https://doi.org/10.1038/184509a0
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1016/0370-1573(74)90029-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032536411
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1016/0378-4371(91)90299-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1015305941
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1103/physrev.122.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060424143
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1103/physrev.126.949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060425536
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1103/physreve.55.3878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043400905
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physreve.62.7059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033987505
83 rdf:type schema:CreativeWork
84 https://doi.org/10.3367/ufnr.0117.197511a.0401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071216146
85 rdf:type schema:CreativeWork
86 https://doi.org/10.3367/ufnr.0150.198610b.0221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071217869
87 rdf:type schema:CreativeWork
88 https://doi.org/10.3367/ufnr.0170.200008b.0831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071219621
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.410300.6 schema:alternateName National Academy of Sciences of Belarus
91 schema:name National Academy of Sciences of Belarus, Academic Scientific Complex “A. V. Luikov Heat and Mass Transfer Institute,”, Minsk, Belarus
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...