Analysis of tensor product multigrid View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-03

AUTHORS

S. Börm, R. Hiptmair

ABSTRACT

We consider anisotropic second order elliptic boundary value problems in two dimensions, for which the anisotropy is exactly aligned with the coordinate axes. This includes cases where the operator features a singular perturbation in one coordinate direction, whereas its restriction to the other direction remains neatly elliptic. Most prominently, such a situation arises when polar coordinates are introduced. The common multigrid approach to such problems relies on line relaxation in the direction of the singular perturbation combined with semi-coarsening in the other direction. Taking the idea from classical Fourier analysis of multigrid, we employ eigenspace techniques to separate the coordinate directions. Thus, convergence of the multigrid method can be examined by looking at one-dimensional operators only. In a tensor product Galerkin setting, this makes it possible to confirm that the convergence rates of the multigrid V-cycle are bounded independently of the number of grid levels involved. In addition, the estimates reveal that convergence is also robust with respect to a singular perturbation in one coordinate direction. Finally, we supply numerical evidence that the algorithm performs satisfactorily in settings more general than those covered by the proof. More... »

PAGES

219-234

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1016686408271

DOI

http://dx.doi.org/10.1023/a:1016686408271

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023821589


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Institut f\u00fcr Praktische Mathematik, Universit\u00e4t Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00f6rm", 
        "givenName": "S.", 
        "id": "sg:person.016063530723.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016063530723.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of T\u00fcbingen", 
          "id": "https://www.grid.ac/institutes/grid.10392.39", 
          "name": [
            "Universit\u00e4t T\u00fcbingen, Sonderforschungsbereich 382, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hiptmair", 
        "givenName": "R.", 
        "id": "sg:person.011316230741.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011316230741.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01385703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002085532", 
          "https://doi.org/10.1007/bf01385703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01409786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007606017", 
          "https://doi.org/10.1007/bf01409786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01409786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007606017", 
          "https://doi.org/10.1007/bf01409786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0427(90)90252-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012915434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(89)90121-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014012838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4288-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014836955", 
          "https://doi.org/10.1007/978-1-4612-4288-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4288-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014836955", 
          "https://doi.org/10.1007/978-1-4612-4288-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9274(96)00062-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017260229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8524-9_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020802711", 
          "https://doi.org/10.1007/978-3-0348-8524-9_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8524-9_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020802711", 
          "https://doi.org/10.1007/978-3-0348-8524-9_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-1506(199703/04)4:2<85::aid-nla100>3.0.co;2-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022477280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1977-0431719-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026121031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02238516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034665479", 
          "https://doi.org/10.1007/bf02238516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02238516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034665479", 
          "https://doi.org/10.1007/bf02238516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002110050063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037169352", 
          "https://doi.org/10.1007/s002110050063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1997.5854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040106178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0096-3003(88)90110-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046842210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9274(96)00067-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052506430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(91)90213-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052862967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0720066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0910043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062857255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0916020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062857718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1034116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062863418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827596305829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062884455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-85732-3_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089722097", 
          "https://doi.org/10.1007/978-3-322-85732-3_17"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-03", 
    "datePublishedReg": "2001-03-01", 
    "description": "We consider anisotropic second order elliptic boundary value problems in two dimensions, for which the anisotropy is exactly aligned with the coordinate axes. This includes cases where the operator features a singular perturbation in one coordinate direction, whereas its restriction to the other direction remains neatly elliptic. Most prominently, such a situation arises when polar coordinates are introduced. The common multigrid approach to such problems relies on line relaxation in the direction of the singular perturbation combined with semi-coarsening in the other direction. Taking the idea from classical Fourier analysis of multigrid, we employ eigenspace techniques to separate the coordinate directions. Thus, convergence of the multigrid method can be examined by looking at one-dimensional operators only. In a tensor product Galerkin setting, this makes it possible to confirm that the convergence rates of the multigrid V-cycle are bounded independently of the number of grid levels involved. In addition, the estimates reveal that convergence is also robust with respect to a singular perturbation in one coordinate direction. Finally, we supply numerical evidence that the algorithm performs satisfactorily in settings more general than those covered by the proof.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1016686408271", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050467", 
        "issn": [
          "1017-1398", 
          "1572-9265"
        ], 
        "name": "Numerical Algorithms", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Analysis of tensor product multigrid", 
    "pagination": "219-234", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "717d7844466a0048f74697b766c92b6098dbfb2c5218b7df2499bf86e52d9d99"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1016686408271"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023821589"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1016686408271", 
      "https://app.dimensions.ai/details/publication/pub.1023821589"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1016686408271"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1016686408271'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1016686408271'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1016686408271'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1016686408271'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1016686408271 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N1c1aa4322daf4a84abae8277fed9cfe5
4 schema:citation sg:pub.10.1007/978-1-4612-4288-8
5 sg:pub.10.1007/978-3-0348-8524-9_4
6 sg:pub.10.1007/978-3-322-85732-3_17
7 sg:pub.10.1007/bf01385703
8 sg:pub.10.1007/bf01409786
9 sg:pub.10.1007/bf02238516
10 sg:pub.10.1007/s002110050063
11 https://doi.org/10.1002/(sici)1099-1506(199703/04)4:2<85::aid-nla100>3.0.co;2-2
12 https://doi.org/10.1006/jcph.1997.5854
13 https://doi.org/10.1016/0021-9991(89)90121-6
14 https://doi.org/10.1016/0021-9991(91)90213-5
15 https://doi.org/10.1016/0096-3003(88)90110-5
16 https://doi.org/10.1016/0377-0427(90)90252-u
17 https://doi.org/10.1016/s0168-9274(96)00062-1
18 https://doi.org/10.1016/s0168-9274(96)00067-0
19 https://doi.org/10.1090/s0025-5718-1977-0431719-x
20 https://doi.org/10.1137/0720066
21 https://doi.org/10.1137/0910043
22 https://doi.org/10.1137/0916020
23 https://doi.org/10.1137/1034116
24 https://doi.org/10.1137/s1064827596305829
25 schema:datePublished 2001-03
26 schema:datePublishedReg 2001-03-01
27 schema:description We consider anisotropic second order elliptic boundary value problems in two dimensions, for which the anisotropy is exactly aligned with the coordinate axes. This includes cases where the operator features a singular perturbation in one coordinate direction, whereas its restriction to the other direction remains neatly elliptic. Most prominently, such a situation arises when polar coordinates are introduced. The common multigrid approach to such problems relies on line relaxation in the direction of the singular perturbation combined with semi-coarsening in the other direction. Taking the idea from classical Fourier analysis of multigrid, we employ eigenspace techniques to separate the coordinate directions. Thus, convergence of the multigrid method can be examined by looking at one-dimensional operators only. In a tensor product Galerkin setting, this makes it possible to confirm that the convergence rates of the multigrid V-cycle are bounded independently of the number of grid levels involved. In addition, the estimates reveal that convergence is also robust with respect to a singular perturbation in one coordinate direction. Finally, we supply numerical evidence that the algorithm performs satisfactorily in settings more general than those covered by the proof.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N25df7eb49158452cabe6039180b4d283
32 N263eabf42281453594e97face77cb4eb
33 sg:journal.1050467
34 schema:name Analysis of tensor product multigrid
35 schema:pagination 219-234
36 schema:productId Nb7b5c5560a6c422c9e3631cebf48f1b0
37 Ndf35f88e9f2a408fbdaccf45958290e1
38 Nee122710b5fc4c80ac90f00b2abfddd2
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023821589
40 https://doi.org/10.1023/a:1016686408271
41 schema:sdDatePublished 2019-04-11T00:21
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nf984e1b381964516bef3ad813867b887
44 schema:url http://link.springer.com/10.1023%2FA%3A1016686408271
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N036723d030d940538d2d62474a128071 rdf:first sg:person.011316230741.77
49 rdf:rest rdf:nil
50 N1c1aa4322daf4a84abae8277fed9cfe5 rdf:first sg:person.016063530723.23
51 rdf:rest N036723d030d940538d2d62474a128071
52 N25df7eb49158452cabe6039180b4d283 schema:issueNumber 3
53 rdf:type schema:PublicationIssue
54 N263eabf42281453594e97face77cb4eb schema:volumeNumber 26
55 rdf:type schema:PublicationVolume
56 Nb7b5c5560a6c422c9e3631cebf48f1b0 schema:name readcube_id
57 schema:value 717d7844466a0048f74697b766c92b6098dbfb2c5218b7df2499bf86e52d9d99
58 rdf:type schema:PropertyValue
59 Ndf35f88e9f2a408fbdaccf45958290e1 schema:name dimensions_id
60 schema:value pub.1023821589
61 rdf:type schema:PropertyValue
62 Nee122710b5fc4c80ac90f00b2abfddd2 schema:name doi
63 schema:value 10.1023/a:1016686408271
64 rdf:type schema:PropertyValue
65 Nf984e1b381964516bef3ad813867b887 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
71 schema:name Numerical and Computational Mathematics
72 rdf:type schema:DefinedTerm
73 sg:journal.1050467 schema:issn 1017-1398
74 1572-9265
75 schema:name Numerical Algorithms
76 rdf:type schema:Periodical
77 sg:person.011316230741.77 schema:affiliation https://www.grid.ac/institutes/grid.10392.39
78 schema:familyName Hiptmair
79 schema:givenName R.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011316230741.77
81 rdf:type schema:Person
82 sg:person.016063530723.23 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
83 schema:familyName Börm
84 schema:givenName S.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016063530723.23
86 rdf:type schema:Person
87 sg:pub.10.1007/978-1-4612-4288-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014836955
88 https://doi.org/10.1007/978-1-4612-4288-8
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/978-3-0348-8524-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020802711
91 https://doi.org/10.1007/978-3-0348-8524-9_4
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/978-3-322-85732-3_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089722097
94 https://doi.org/10.1007/978-3-322-85732-3_17
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf01385703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002085532
97 https://doi.org/10.1007/bf01385703
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01409786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007606017
100 https://doi.org/10.1007/bf01409786
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf02238516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034665479
103 https://doi.org/10.1007/bf02238516
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s002110050063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037169352
106 https://doi.org/10.1007/s002110050063
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/(sici)1099-1506(199703/04)4:2<85::aid-nla100>3.0.co;2-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022477280
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1006/jcph.1997.5854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040106178
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0021-9991(89)90121-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014012838
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0021-9991(91)90213-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052862967
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0096-3003(88)90110-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046842210
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0377-0427(90)90252-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1012915434
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0168-9274(96)00062-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017260229
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0168-9274(96)00067-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052506430
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1090/s0025-5718-1977-0431719-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026121031
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1137/0720066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852954
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1137/0910043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062857255
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1137/0916020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062857718
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1137/1034116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062863418
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1137/s1064827596305829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062884455
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.10392.39 schema:alternateName University of Tübingen
137 schema:name Universität Tübingen, Sonderforschungsbereich 382, Germany
138 rdf:type schema:Organization
139 https://www.grid.ac/institutes/grid.9764.c schema:alternateName Kiel University
140 schema:name Institut für Praktische Mathematik, Universität Kiel, Germany
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...