Analysis of Crystallization of a Supercooled Melt by the Integral‐Balance Method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-01

AUTHORS

Yu. A. Samoilovich, V. I. Timoshpol'skii, I. A. Trusova

ABSTRACT

Using the integral‐balance method, the Stefan problem is solved for simply shaped crystals (a prism, a cylinder, and a sphere) grown in a supercooled melt. It is shown that the rate of crystal growth increases with the surface‐to‐volume ratio (in passage from a prism to a cylinder and a sphere). For all the three shapes of crystals studied the dependence of the speed of motion of the crystallization front on the supercooling is nonlinear and is characterized by a progressive increase. More... »

PAGES

199-207

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1016658827880

DOI

http://dx.doi.org/10.1023/a:1016658827880

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050740180


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Belarusian State Polytechnic Academy, Minsk, Belarus", 
          "id": "http://www.grid.ac/institutes/grid.9427.8", 
          "name": [
            "Belarusian State Polytechnic Academy, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Samoilovich", 
        "givenName": "Yu. A.", 
        "id": "sg:person.015210143067.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015210143067.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Belarusian State Polytechnic Academy, Minsk, Belarus", 
          "id": "http://www.grid.ac/institutes/grid.9427.8", 
          "name": [
            "Belarusian State Polytechnic Academy, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Timoshpol'skii", 
        "givenName": "V. I.", 
        "id": "sg:person.012303101741.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303101741.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Belarusian State Polytechnic Academy, Minsk, Belarus", 
          "id": "http://www.grid.ac/institutes/grid.9427.8", 
          "name": [
            "Belarusian State Polytechnic Academy, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trusova", 
        "givenName": "I. A.", 
        "id": "sg:person.016026753763.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026753763.38"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001-01", 
    "datePublishedReg": "2001-01-01", 
    "description": "Using the integral\u2010balance method, the Stefan problem is solved for simply shaped crystals (a prism, a cylinder, and a sphere) grown in a supercooled melt. It is shown that the rate of crystal growth increases with the surface\u2010to\u2010volume ratio (in passage from a prism to a cylinder and a sphere). For all the three shapes of crystals studied the dependence of the speed of motion of the crystallization front on the supercooling is nonlinear and is characterized by a progressive increase.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1016658827880", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313809", 
        "issn": [
          "1062-0125", 
          "1573-871X"
        ], 
        "name": "Journal of Engineering Physics and Thermophysics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "74"
      }
    ], 
    "keywords": [
      "integral-balance method", 
      "Stefan problem", 
      "melt", 
      "volume ratio", 
      "shape of crystals", 
      "speed of motion", 
      "crystallization front", 
      "method", 
      "problem", 
      "crystals", 
      "rate", 
      "crystal growth increases", 
      "growth increases", 
      "increase", 
      "surface", 
      "ratio", 
      "shape", 
      "dependence", 
      "speed", 
      "motion", 
      "front", 
      "supercooling", 
      "progressive increase", 
      "analysis of crystallization", 
      "analysis", 
      "crystallization", 
      "Supercooled Melt"
    ], 
    "name": "Analysis of Crystallization of a Supercooled Melt by the Integral\u2010Balance Method", 
    "pagination": "199-207", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050740180"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1016658827880"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1016658827880", 
      "https://app.dimensions.ai/details/publication/pub.1050740180"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_335.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1016658827880"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1016658827880'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1016658827880'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1016658827880'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1016658827880'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      53 URIs      45 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1016658827880 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N30de2fa910b846cc924fafad37a43748
4 schema:datePublished 2001-01
5 schema:datePublishedReg 2001-01-01
6 schema:description Using the integral‐balance method, the Stefan problem is solved for simply shaped crystals (a prism, a cylinder, and a sphere) grown in a supercooled melt. It is shown that the rate of crystal growth increases with the surface‐to‐volume ratio (in passage from a prism to a cylinder and a sphere). For all the three shapes of crystals studied the dependence of the speed of motion of the crystallization front on the supercooling is nonlinear and is characterized by a progressive increase.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nae0eda7e899149b392ed6b4e149050cf
11 Nf8c5f9c393954c65874b86073f498db7
12 sg:journal.1313809
13 schema:keywords Stefan problem
14 Supercooled Melt
15 analysis
16 analysis of crystallization
17 crystal growth increases
18 crystallization
19 crystallization front
20 crystals
21 dependence
22 front
23 growth increases
24 increase
25 integral-balance method
26 melt
27 method
28 motion
29 problem
30 progressive increase
31 rate
32 ratio
33 shape
34 shape of crystals
35 speed
36 speed of motion
37 supercooling
38 surface
39 volume ratio
40 schema:name Analysis of Crystallization of a Supercooled Melt by the Integral‐Balance Method
41 schema:pagination 199-207
42 schema:productId N548c4c53f78243529cc77b7208f2c9c2
43 Nb273371802c4491cb93b52984477e375
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050740180
45 https://doi.org/10.1023/a:1016658827880
46 schema:sdDatePublished 2022-01-01T18:10
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N490ff64c49ea4dc48e33a738af7d52ed
49 schema:url https://doi.org/10.1023/a:1016658827880
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N30de2fa910b846cc924fafad37a43748 rdf:first sg:person.015210143067.12
54 rdf:rest N3e82b8f43d664258a65fe746ac0b72b2
55 N3d38dc6e6c0d45d1b717285a2fe7a594 rdf:first sg:person.016026753763.38
56 rdf:rest rdf:nil
57 N3e82b8f43d664258a65fe746ac0b72b2 rdf:first sg:person.012303101741.01
58 rdf:rest N3d38dc6e6c0d45d1b717285a2fe7a594
59 N490ff64c49ea4dc48e33a738af7d52ed schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N548c4c53f78243529cc77b7208f2c9c2 schema:name doi
62 schema:value 10.1023/a:1016658827880
63 rdf:type schema:PropertyValue
64 Nae0eda7e899149b392ed6b4e149050cf schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 Nb273371802c4491cb93b52984477e375 schema:name dimensions_id
67 schema:value pub.1050740180
68 rdf:type schema:PropertyValue
69 Nf8c5f9c393954c65874b86073f498db7 schema:volumeNumber 74
70 rdf:type schema:PublicationVolume
71 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
72 schema:name Engineering
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
75 schema:name Interdisciplinary Engineering
76 rdf:type schema:DefinedTerm
77 sg:journal.1313809 schema:issn 1062-0125
78 1573-871X
79 schema:name Journal of Engineering Physics and Thermophysics
80 schema:publisher Springer Nature
81 rdf:type schema:Periodical
82 sg:person.012303101741.01 schema:affiliation grid-institutes:grid.9427.8
83 schema:familyName Timoshpol'skii
84 schema:givenName V. I.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303101741.01
86 rdf:type schema:Person
87 sg:person.015210143067.12 schema:affiliation grid-institutes:grid.9427.8
88 schema:familyName Samoilovich
89 schema:givenName Yu. A.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015210143067.12
91 rdf:type schema:Person
92 sg:person.016026753763.38 schema:affiliation grid-institutes:grid.9427.8
93 schema:familyName Trusova
94 schema:givenName I. A.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026753763.38
96 rdf:type schema:Person
97 grid-institutes:grid.9427.8 schema:alternateName Belarusian State Polytechnic Academy, Minsk, Belarus
98 schema:name Belarusian State Polytechnic Academy, Minsk, Belarus
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...