A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-07

AUTHORS

Kai Diethelm, Neville J. Ford, Alan D. Freed

ABSTRACT

We discuss an Adams-type predictor-corrector method for the numericalsolution of fractional differential equations. The method may be usedboth for linear and for nonlinear problems, and it may be extended tomulti-term equations (involving more than one differential operator)too.

PAGES

3-22

References to SciGraph publications

  • 1997-03. Numerical solution of fractional order differential equations by extrapolation in NUMERICAL ALGORITHMS
  • 1999. On the Solution of Nonlinear Fractional-Order Differential Equations Used in the Modeling of Viscoplasticity in SCIENTIFIC COMPUTING IN CHEMICAL ENGINEERING II
  • 2001-04. The numerical solution of fractional differential equations: Speed versus accuracy in NUMERICAL ALGORITHMS
  • 2002-09. Numerical Solution of the Bagley-Torvik Equation in BIT NUMERICAL MATHEMATICS
  • 1997. Fractional Calculus in FRACTALS AND FRACTIONAL CALCULUS IN CONTINUUM MECHANICS
  • 1997. Fractional Calculus in FRACTALS AND FRACTIONAL CALCULUS IN CONTINUUM MECHANICS
  • 1986-04. Polynomial operators, stieltjes convolution, and fractional calculus in hereditary mechanics in ACTA MECHANICA
  • 2004-05. Detailed Error Analysis for a Fractional Adams Method in NUMERICAL ALGORITHMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1016592219341

    DOI

    http://dx.doi.org/10.1023/a:1016592219341

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028652887


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Angewandte Mathematik, Technische Universit\u00e4t Braunschweig, Pockelsstr. 14, D-38106, Braunschweig, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6738.a", 
              "name": [
                "Institut f\u00fcr Angewandte Mathematik, Technische Universit\u00e4t Braunschweig, Pockelsstr. 14, D-38106, Braunschweig, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Diethelm", 
            "givenName": "Kai", 
            "id": "sg:person.014263140331.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014263140331.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Chester College, Parkgate Road, CH1 4BJ, Chester, United Kingdom", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Mathematics, Chester College, Parkgate Road, CH1 4BJ, Chester, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ford", 
            "givenName": "Neville J.", 
            "id": "sg:person.07612255205.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07612255205.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Polymers Branch, NASA's John H. Glenn Research Center at Lewis Field, 21000 Brookpark Road, MS 49-3, 44135, Cleveland, OH, U.S.A", 
              "id": "http://www.grid.ac/institutes/grid.419077.c", 
              "name": [
                "Polymers Branch, NASA's John H. Glenn Research Center at Lewis Field, 21000 Brookpark Road, MS 49-3, 44135, Cleveland, OH, U.S.A"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Freed", 
            "givenName": "Alan D.", 
            "id": "sg:person.016275654463.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016275654463.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-7091-2664-6_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034876912", 
              "https://doi.org/10.1007/978-3-7091-2664-6_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-60185-9_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019220844", 
              "https://doi.org/10.1007/978-3-642-60185-9_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:numa.0000027736.85078.be", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005718557", 
              "https://doi.org/10.1023/b:numa.0000027736.85078.be"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1016601312158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006560409", 
              "https://doi.org/10.1023/a:1016601312158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021973025166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004401337", 
              "https://doi.org/10.1023/a:1021973025166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7091-2664-6_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038872226", 
              "https://doi.org/10.1007/978-3-7091-2664-6_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1019147432240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018368826", 
              "https://doi.org/10.1023/a:1019147432240"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01176603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014686508", 
              "https://doi.org/10.1007/bf01176603"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-07", 
        "datePublishedReg": "2002-07-01", 
        "description": "We discuss an Adams-type predictor-corrector method for the numericalsolution of fractional differential equations. The method may be usedboth for linear and for nonlinear problems, and it may be extended tomulti-term equations (involving more than one differential operator)too.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1016592219341", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1040905", 
            "issn": [
              "0924-090X", 
              "1573-269X"
            ], 
            "name": "Nonlinear Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "keywords": [
          "fractional differential equations", 
          "differential equations", 
          "Adams-type predictor-corrector method", 
          "predictor-corrector method", 
          "predictor-corrector approach", 
          "nonlinear problems", 
          "numerical solution", 
          "equations", 
          "numericalsolution", 
          "linear", 
          "problem", 
          "solution", 
          "approach", 
          "method"
        ], 
        "name": "A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations", 
        "pagination": "3-22", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028652887"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1016592219341"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1016592219341", 
          "https://app.dimensions.ai/details/publication/pub.1028652887"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_355.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1016592219341"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1016592219341'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1016592219341'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1016592219341'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1016592219341'


     

    This table displays all metadata directly associated to this object as RDF triples.

    123 TRIPLES      21 PREDICATES      47 URIs      31 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1016592219341 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N48097bd5c6b74e4591ed92620c67ad77
    4 schema:citation sg:pub.10.1007/978-3-642-60185-9_24
    5 sg:pub.10.1007/978-3-7091-2664-6_5
    6 sg:pub.10.1007/978-3-7091-2664-6_6
    7 sg:pub.10.1007/bf01176603
    8 sg:pub.10.1023/a:1016601312158
    9 sg:pub.10.1023/a:1019147432240
    10 sg:pub.10.1023/a:1021973025166
    11 sg:pub.10.1023/b:numa.0000027736.85078.be
    12 schema:datePublished 2002-07
    13 schema:datePublishedReg 2002-07-01
    14 schema:description We discuss an Adams-type predictor-corrector method for the numericalsolution of fractional differential equations. The method may be usedboth for linear and for nonlinear problems, and it may be extended tomulti-term equations (involving more than one differential operator)too.
    15 schema:genre article
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N9550b4d8852849afaf57f3d2772d2fbb
    18 N9887762ef7a1455fa1efbf5fd4f5d2ec
    19 sg:journal.1040905
    20 schema:keywords Adams-type predictor-corrector method
    21 approach
    22 differential equations
    23 equations
    24 fractional differential equations
    25 linear
    26 method
    27 nonlinear problems
    28 numerical solution
    29 numericalsolution
    30 predictor-corrector approach
    31 predictor-corrector method
    32 problem
    33 solution
    34 schema:name A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
    35 schema:pagination 3-22
    36 schema:productId N10790420dbf944ea92e46662474fa8d1
    37 N70277fe9b140415ea0060b3daed8c6d9
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028652887
    39 https://doi.org/10.1023/a:1016592219341
    40 schema:sdDatePublished 2022-10-01T06:32
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher N21f7e77ac7e84fe7a75653c50de8dddd
    43 schema:url https://doi.org/10.1023/a:1016592219341
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N10790420dbf944ea92e46662474fa8d1 schema:name dimensions_id
    48 schema:value pub.1028652887
    49 rdf:type schema:PropertyValue
    50 N21f7e77ac7e84fe7a75653c50de8dddd schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N48097bd5c6b74e4591ed92620c67ad77 rdf:first sg:person.014263140331.96
    53 rdf:rest N89bc04991de44b3fa2edb969e92e901a
    54 N70277fe9b140415ea0060b3daed8c6d9 schema:name doi
    55 schema:value 10.1023/a:1016592219341
    56 rdf:type schema:PropertyValue
    57 N89bc04991de44b3fa2edb969e92e901a rdf:first sg:person.07612255205.18
    58 rdf:rest Nfe5c6ed1e97c4da08e109ee15ebfc4b9
    59 N9550b4d8852849afaf57f3d2772d2fbb schema:issueNumber 1-4
    60 rdf:type schema:PublicationIssue
    61 N9887762ef7a1455fa1efbf5fd4f5d2ec schema:volumeNumber 29
    62 rdf:type schema:PublicationVolume
    63 Nfe5c6ed1e97c4da08e109ee15ebfc4b9 rdf:first sg:person.016275654463.04
    64 rdf:rest rdf:nil
    65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Mathematical Sciences
    67 rdf:type schema:DefinedTerm
    68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Pure Mathematics
    70 rdf:type schema:DefinedTerm
    71 sg:journal.1040905 schema:issn 0924-090X
    72 1573-269X
    73 schema:name Nonlinear Dynamics
    74 schema:publisher Springer Nature
    75 rdf:type schema:Periodical
    76 sg:person.014263140331.96 schema:affiliation grid-institutes:grid.6738.a
    77 schema:familyName Diethelm
    78 schema:givenName Kai
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014263140331.96
    80 rdf:type schema:Person
    81 sg:person.016275654463.04 schema:affiliation grid-institutes:grid.419077.c
    82 schema:familyName Freed
    83 schema:givenName Alan D.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016275654463.04
    85 rdf:type schema:Person
    86 sg:person.07612255205.18 schema:affiliation grid-institutes:None
    87 schema:familyName Ford
    88 schema:givenName Neville J.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07612255205.18
    90 rdf:type schema:Person
    91 sg:pub.10.1007/978-3-642-60185-9_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019220844
    92 https://doi.org/10.1007/978-3-642-60185-9_24
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/978-3-7091-2664-6_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038872226
    95 https://doi.org/10.1007/978-3-7091-2664-6_5
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/978-3-7091-2664-6_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034876912
    98 https://doi.org/10.1007/978-3-7091-2664-6_6
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/bf01176603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014686508
    101 https://doi.org/10.1007/bf01176603
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1023/a:1016601312158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006560409
    104 https://doi.org/10.1023/a:1016601312158
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1023/a:1019147432240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018368826
    107 https://doi.org/10.1023/a:1019147432240
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1023/a:1021973025166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004401337
    110 https://doi.org/10.1023/a:1021973025166
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1023/b:numa.0000027736.85078.be schema:sameAs https://app.dimensions.ai/details/publication/pub.1005718557
    113 https://doi.org/10.1023/b:numa.0000027736.85078.be
    114 rdf:type schema:CreativeWork
    115 grid-institutes:None schema:alternateName Department of Mathematics, Chester College, Parkgate Road, CH1 4BJ, Chester, United Kingdom
    116 schema:name Department of Mathematics, Chester College, Parkgate Road, CH1 4BJ, Chester, United Kingdom
    117 rdf:type schema:Organization
    118 grid-institutes:grid.419077.c schema:alternateName Polymers Branch, NASA's John H. Glenn Research Center at Lewis Field, 21000 Brookpark Road, MS 49-3, 44135, Cleveland, OH, U.S.A
    119 schema:name Polymers Branch, NASA's John H. Glenn Research Center at Lewis Field, 21000 Brookpark Road, MS 49-3, 44135, Cleveland, OH, U.S.A
    120 rdf:type schema:Organization
    121 grid-institutes:grid.6738.a schema:alternateName Institut für Angewandte Mathematik, Technische Universität Braunschweig, Pockelsstr. 14, D-38106, Braunschweig, Germany
    122 schema:name Institut für Angewandte Mathematik, Technische Universität Braunschweig, Pockelsstr. 14, D-38106, Braunschweig, Germany
    123 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...