On the Rank of Picard Groups of Modular Varieties Attached to Orthogonal Groups View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-08

AUTHORS

Jan Hendrik Bruinier

ABSTRACT

We derive lower bounds for the rank of Picard groups of modular varieties associated with natural congruence subgroups of the orthogonal group of an even lattice of signature (2, l). As an example we consider the Siegel modular group of genus 2. The analytic part of this paper also leads to certain class number identities. More... »

PAGES

49-63

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1016357029843

DOI

http://dx.doi.org/10.1023/a:1016357029843

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049708474


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Mathematics, University of Wisconsin-Madison, Van Vleck Hall, 480 Lincoln Drive, 53706-1388, Madison, WI, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruinier", 
        "givenName": "Jan Hendrik", 
        "id": "sg:person.01127662625.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127662625.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0040-9383(85)90011-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010769224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02568170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013319163", 
          "https://doi.org/10.1007/bf02568170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002220050341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018481033", 
          "https://doi.org/10.1007/s002220050341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002220050341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018481033", 
          "https://doi.org/10.1007/s002220050341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0083033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027096539", 
          "https://doi.org/10.1007/bfb0083033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002220050232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032505399", 
          "https://doi.org/10.1007/s002220050232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1988.391.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034470275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1992.430.179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044627314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jnth.1995.1078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051968857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129167x98000117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062903596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-00-10424-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064415130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-99-09710-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064420503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.1812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073137534"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-08", 
    "datePublishedReg": "2002-08-01", 
    "description": "We derive lower bounds for the rank of Picard groups of modular varieties associated with natural congruence subgroups of the orthogonal group of an even lattice of signature (2, l). As an example we consider the Siegel modular group of genus 2. The analytic part of this paper also leads to certain class number identities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1016357029843", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1138208", 
        "issn": [
          "0010-437X", 
          "1570-5846"
        ], 
        "name": "Compositio Mathematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "133"
      }
    ], 
    "name": "On the Rank of Picard Groups of Modular Varieties Attached to Orthogonal Groups", 
    "pagination": "49-63", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eccb9a45c100de03a8da8da73b0a661c1bdf614a51d2a0a027b7b645c26e6a42"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1016357029843"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049708474"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1016357029843", 
      "https://app.dimensions.ai/details/publication/pub.1049708474"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1016357029843"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1016357029843'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1016357029843'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1016357029843'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1016357029843'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1016357029843 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N69ca7f0ba22544d19263a8c881238df7
4 schema:citation sg:pub.10.1007/bf02568170
5 sg:pub.10.1007/bfb0083033
6 sg:pub.10.1007/s002220050232
7 sg:pub.10.1007/s002220050341
8 https://doi.org/10.1006/jnth.1995.1078
9 https://doi.org/10.1016/0040-9383(85)90011-4
10 https://doi.org/10.1142/s0129167x98000117
11 https://doi.org/10.1215/s0012-7094-00-10424-3
12 https://doi.org/10.1215/s0012-7094-99-09710-7
13 https://doi.org/10.1515/crll.1988.391.100
14 https://doi.org/10.1515/crll.1992.430.179
15 https://doi.org/10.5802/aif.1812
16 schema:datePublished 2002-08
17 schema:datePublishedReg 2002-08-01
18 schema:description We derive lower bounds for the rank of Picard groups of modular varieties associated with natural congruence subgroups of the orthogonal group of an even lattice of signature (2, l). As an example we consider the Siegel modular group of genus 2. The analytic part of this paper also leads to certain class number identities.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N6c7c27a360f14564842d894ce98f7f42
23 Nc844f86ec39b4b7581855b4b96c82d14
24 sg:journal.1138208
25 schema:name On the Rank of Picard Groups of Modular Varieties Attached to Orthogonal Groups
26 schema:pagination 49-63
27 schema:productId N325557ed9f644da1b32bef0ece7c0ab6
28 N4d488c7a98e648978ef2c3344e651dfc
29 N984ef840db6a470fb3bd0402530eb926
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049708474
31 https://doi.org/10.1023/a:1016357029843
32 schema:sdDatePublished 2019-04-10T23:23
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nf56fb10146fb40fea1e787ad1d5ee791
35 schema:url http://link.springer.com/10.1023/A:1016357029843
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N325557ed9f644da1b32bef0ece7c0ab6 schema:name dimensions_id
40 schema:value pub.1049708474
41 rdf:type schema:PropertyValue
42 N4d488c7a98e648978ef2c3344e651dfc schema:name readcube_id
43 schema:value eccb9a45c100de03a8da8da73b0a661c1bdf614a51d2a0a027b7b645c26e6a42
44 rdf:type schema:PropertyValue
45 N69ca7f0ba22544d19263a8c881238df7 rdf:first sg:person.01127662625.41
46 rdf:rest rdf:nil
47 N6c7c27a360f14564842d894ce98f7f42 schema:issueNumber 1
48 rdf:type schema:PublicationIssue
49 N984ef840db6a470fb3bd0402530eb926 schema:name doi
50 schema:value 10.1023/a:1016357029843
51 rdf:type schema:PropertyValue
52 Nc844f86ec39b4b7581855b4b96c82d14 schema:volumeNumber 133
53 rdf:type schema:PublicationVolume
54 Nf56fb10146fb40fea1e787ad1d5ee791 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1138208 schema:issn 0010-437X
63 1570-5846
64 schema:name Compositio Mathematica
65 rdf:type schema:Periodical
66 sg:person.01127662625.41 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
67 schema:familyName Bruinier
68 schema:givenName Jan Hendrik
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127662625.41
70 rdf:type schema:Person
71 sg:pub.10.1007/bf02568170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013319163
72 https://doi.org/10.1007/bf02568170
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bfb0083033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027096539
75 https://doi.org/10.1007/bfb0083033
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/s002220050232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032505399
78 https://doi.org/10.1007/s002220050232
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/s002220050341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018481033
81 https://doi.org/10.1007/s002220050341
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1006/jnth.1995.1078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051968857
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0040-9383(85)90011-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010769224
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1142/s0129167x98000117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062903596
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1215/s0012-7094-00-10424-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415130
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1215/s0012-7094-99-09710-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064420503
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1515/crll.1988.391.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034470275
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1515/crll.1992.430.179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044627314
96 rdf:type schema:CreativeWork
97 https://doi.org/10.5802/aif.1812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073137534
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
100 schema:name Department of Mathematics, University of Wisconsin-Madison, Van Vleck Hall, 480 Lincoln Drive, 53706-1388, Madison, WI, U.S.A.
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...