Variables associated with fibrinogen in a population-based study: Interaction between smoking and age on fibrinogen concentration View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-10

AUTHORS

Simona Nascetti, Roberto Elosua, Araceli Pena, María Isabel Covas, Mariano Sentí, Jaume Marrugat

ABSTRACT

The aim of the study was to assess the association between fibrinogen and other cardiovascular risk factors. A cross-sectional population-based study in Gerona (Spain) was designed, 1544 subjects (747 men, 797 women) participated. Anthropometric measurements, blood pressure and blood samples were obtained. Fibrinogen was measured by a coagulometric method. Smoking habits, alcohol consumption and physical activity practice were recorded by questionnaires. Fibrinogen was directly related to age, body mass index (BMI) and female gender and inversely to alcohol and moderate–heavy physical activity practice. Fibrinogen was also higher in men and young women who smoked. In the multivariate analysis, age (regression coefficient (RC): 1.33; standard error (SE): 0.13; unit = 1 year), female gender (RC: 12.24; SE: 3.56) and BMI (RC: 1.83; SE: 0.39; unit = 1 kg/m2) were directly associated with fibrinogen, whereas alcohol (RC: −0.04; SE: 0.01; unit = 1 g/d) was inversely associated. A statistically significant interaction between smoking and age was observed. Age was the strongest variable associated with fibrinogen and modifies the association between smoking and fibrinogen; the magnitude of this association increases with age. More... »

PAGES

953-958

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1016216808365

DOI

http://dx.doi.org/10.1023/a:1016216808365

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053003226

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/12188016


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Alcohol Drinking", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Analysis of Variance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiovascular Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fibrinogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Smoking", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistics, Nonparametric", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surveys and Questionnaires", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Unitat de Lipids i Epidemiologia Cardiovascular, Institut Municipal d'Investigaci\u00f3 M\u00e8dica, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Centro per lo studio dell' arteriosclerosi e delle malattie dismetaboliche GC Descovich, Policlinico S Orsola-Malpighi, Bologna, Italy", 
            "Unitat de Lipids i Epidemiologia Cardiovascular, Institut Municipal d'Investigaci\u00f3 M\u00e8dica, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nascetti", 
        "givenName": "Simona", 
        "id": "sg:person.01363417253.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363417253.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unitat de Lipids i Epidemiologia Cardiovascular, Institut Municipal d'Investigaci\u00f3 M\u00e8dica, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Unitat de Lipids i Epidemiologia Cardiovascular, Institut Municipal d'Investigaci\u00f3 M\u00e8dica, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elosua", 
        "givenName": "Roberto", 
        "id": "sg:person.01315216030.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315216030.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unitat de Lipids i Epidemiologia Cardiovascular, Institut Municipal d'Investigaci\u00f3 M\u00e8dica, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Unitat de Lipids i Epidemiologia Cardiovascular, Institut Municipal d'Investigaci\u00f3 M\u00e8dica, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pena", 
        "givenName": "Araceli", 
        "id": "sg:person.0761334234.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761334234.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unitat de Lipids i Epidemiologia Cardiovascular, Institut Municipal d'Investigaci\u00f3 M\u00e8dica, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Unitat de Lipids i Epidemiologia Cardiovascular, Institut Municipal d'Investigaci\u00f3 M\u00e8dica, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Isabel Covas", 
        "givenName": "Mar\u00eda", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universitat Pompeu Fabra, Barcelona, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Unitat de Lipids i Epidemiologia Cardiovascular, Institut Municipal d'Investigaci\u00f3 M\u00e8dica, Spain", 
            "Universitat Pompeu Fabra, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sent\u00ed", 
        "givenName": "Mariano", 
        "id": "sg:person.0655635430.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655635430.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unitat de Lipids i Epidemiologia Cardiovascular, Institut Municipal d'Investigaci\u00f3 M\u00e8dica, Spain", 
          "id": "http://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Unitat de Lipids i Epidemiologia Cardiovascular, Institut Municipal d'Investigaci\u00f3 M\u00e8dica, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marrugat", 
        "givenName": "Jaume", 
        "id": "sg:person.01166213677.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166213677.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/339301a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006694926", 
          "https://doi.org/10.1038/339301a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/339303a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036736565", 
          "https://doi.org/10.1038/339303a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0800421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051739689", 
          "https://doi.org/10.1038/sj.ijo.0800421"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-10", 
    "datePublishedReg": "2001-10-01", 
    "description": "The aim of the study was to assess the association between fibrinogen and other cardiovascular risk factors. A cross-sectional population-based study in Gerona (Spain) was designed, 1544 subjects (747 men, 797 women) participated. Anthropometric measurements, blood pressure and blood samples were obtained. Fibrinogen was measured by a coagulometric method. Smoking habits, alcohol consumption and physical activity practice were recorded by questionnaires. Fibrinogen was directly related to age, body mass index (BMI) and female gender and inversely to alcohol and moderate\u2013heavy physical activity practice. Fibrinogen was also higher in men and young women who smoked. In the multivariate analysis, age (regression coefficient (RC): 1.33; standard error (SE): 0.13; unit = 1 year), female gender (RC: 12.24; SE: 3.56) and BMI (RC: 1.83; SE: 0.39; unit = 1 kg/m2) were directly associated with fibrinogen, whereas alcohol (RC: \u22120.04; SE: 0.01; unit = 1 g/d) was inversely associated. A statistically significant interaction between smoking and age was observed. Age was the strongest variable associated with fibrinogen and modifies the association between smoking and fibrinogen; the magnitude of this association increases with age.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1016216808365", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1095636", 
        "issn": [
          "0393-2990", 
          "1573-7284"
        ], 
        "name": "European Journal of Epidemiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "body mass index", 
      "population-based study", 
      "physical activity practice", 
      "female gender", 
      "cross-sectional population-based study", 
      "activity practice", 
      "cardiovascular risk factors", 
      "blood pressure", 
      "smoking habits", 
      "mass index", 
      "risk factors", 
      "coagulometric methods", 
      "blood samples", 
      "anthropometric measurements", 
      "alcohol consumption", 
      "multivariate analysis", 
      "fibrinogen concentration", 
      "young women", 
      "smoking", 
      "age", 
      "fibrinogen", 
      "association", 
      "significant interaction", 
      "strongest variable", 
      "gender", 
      "study", 
      "women", 
      "men", 
      "questionnaire", 
      "subjects", 
      "alcohol", 
      "aim", 
      "habits", 
      "practice", 
      "index", 
      "factors", 
      "variables", 
      "Gerona", 
      "pressure", 
      "modifies", 
      "concentration", 
      "samples", 
      "consumption", 
      "analysis", 
      "interaction", 
      "measurements", 
      "method", 
      "magnitude", 
      "moderate\u2013heavy physical activity practice"
    ], 
    "name": "Variables associated with fibrinogen in a population-based study: Interaction between smoking and age on fibrinogen concentration", 
    "pagination": "953-958", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053003226"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1016216808365"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "12188016"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1016216808365", 
      "https://app.dimensions.ai/details/publication/pub.1053003226"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_335.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1016216808365"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1016216808365'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1016216808365'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1016216808365'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1016216808365'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      22 PREDICATES      99 URIs      88 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1016216808365 schema:about N306825e5c3a946fca2e482029fd9cd28
2 N3233bef90384485294b70ded62944bd9
3 N3bfb46317bf14618a4b5b36c940efba7
4 N41bc4e9627124d3f85cad96b7c4366dc
5 N483be18218d04a67b9c10fece97f8d17
6 N48a7ada6e89d4d01b4cedb571265d56d
7 N536c9373948f4a1688481843646ad4ab
8 N56a6c94b67fb4795a1e16c30817d67b8
9 N6155e5f476fa46e1b1892e3cb3a3659a
10 N74d520e79a92410d920e035648dbbaf6
11 N8046596b360a491fad60452f45141d63
12 N85a9992a93e04c40bba88ba341fd6b1e
13 N96f9ab5a1e6d4d46a09bee8027b9a28a
14 N98d8766a015a4fb492cdb82d031c35b2
15 Na8775e61b17f4da1a56007157ac45e48
16 Na8b483d4742d47e1827e16689d654bb5
17 Nac7258e748da45f0965764e077605d09
18 Nbba2bed4870e4a399967d377b0002184
19 Nc2b9976a68cf450781e2b7d9ae48c83b
20 Nc99aeb348b704b20b946fd0ac41dca27
21 anzsrc-for:11
22 anzsrc-for:1117
23 schema:author Nea954108181f45a9b54dd8c14afed316
24 schema:citation sg:pub.10.1038/339301a0
25 sg:pub.10.1038/339303a0
26 sg:pub.10.1038/sj.ijo.0800421
27 schema:datePublished 2001-10
28 schema:datePublishedReg 2001-10-01
29 schema:description The aim of the study was to assess the association between fibrinogen and other cardiovascular risk factors. A cross-sectional population-based study in Gerona (Spain) was designed, 1544 subjects (747 men, 797 women) participated. Anthropometric measurements, blood pressure and blood samples were obtained. Fibrinogen was measured by a coagulometric method. Smoking habits, alcohol consumption and physical activity practice were recorded by questionnaires. Fibrinogen was directly related to age, body mass index (BMI) and female gender and inversely to alcohol and moderate–heavy physical activity practice. Fibrinogen was also higher in men and young women who smoked. In the multivariate analysis, age (regression coefficient (RC): 1.33; standard error (SE): 0.13; unit = 1 year), female gender (RC: 12.24; SE: 3.56) and BMI (RC: 1.83; SE: 0.39; unit = 1 kg/m2) were directly associated with fibrinogen, whereas alcohol (RC: −0.04; SE: 0.01; unit = 1 g/d) was inversely associated. A statistically significant interaction between smoking and age was observed. Age was the strongest variable associated with fibrinogen and modifies the association between smoking and fibrinogen; the magnitude of this association increases with age.
30 schema:genre article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N09223083360e44078581e7005c1aaa27
34 N5c7d0b7f98264659a69491ed56e6ca85
35 sg:journal.1095636
36 schema:keywords Gerona
37 activity practice
38 age
39 aim
40 alcohol
41 alcohol consumption
42 analysis
43 anthropometric measurements
44 association
45 blood pressure
46 blood samples
47 body mass index
48 cardiovascular risk factors
49 coagulometric methods
50 concentration
51 consumption
52 cross-sectional population-based study
53 factors
54 female gender
55 fibrinogen
56 fibrinogen concentration
57 gender
58 habits
59 index
60 interaction
61 magnitude
62 mass index
63 measurements
64 men
65 method
66 moderate–heavy physical activity practice
67 modifies
68 multivariate analysis
69 physical activity practice
70 population-based study
71 practice
72 pressure
73 questionnaire
74 risk factors
75 samples
76 significant interaction
77 smoking
78 smoking habits
79 strongest variable
80 study
81 subjects
82 variables
83 women
84 young women
85 schema:name Variables associated with fibrinogen in a population-based study: Interaction between smoking and age on fibrinogen concentration
86 schema:pagination 953-958
87 schema:productId N0f347a7aee684c7e88e4a5c13cb2121d
88 N2f8c3290775c4cbfa442b5e7aae252ec
89 N35cb1b45e1a6424fa63e777305378697
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053003226
91 https://doi.org/10.1023/a:1016216808365
92 schema:sdDatePublished 2021-12-01T19:13
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher Nf6ec2a1315d04100b14f54a897ca1fe3
95 schema:url https://doi.org/10.1023/a:1016216808365
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N09223083360e44078581e7005c1aaa27 schema:volumeNumber 17
100 rdf:type schema:PublicationVolume
101 N0f347a7aee684c7e88e4a5c13cb2121d schema:name dimensions_id
102 schema:value pub.1053003226
103 rdf:type schema:PropertyValue
104 N1ae9edada3974b3fa2da00e0a8b84865 rdf:first sg:person.0761334234.50
105 rdf:rest Nf5463c723ca447329501757c318d38f0
106 N245b364c3e9144fd94800e8d9c99d30d rdf:first sg:person.01315216030.42
107 rdf:rest N1ae9edada3974b3fa2da00e0a8b84865
108 N2f8c3290775c4cbfa442b5e7aae252ec schema:name doi
109 schema:value 10.1023/a:1016216808365
110 rdf:type schema:PropertyValue
111 N306825e5c3a946fca2e482029fd9cd28 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Smoking
113 rdf:type schema:DefinedTerm
114 N3233bef90384485294b70ded62944bd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Adult
116 rdf:type schema:DefinedTerm
117 N35cb1b45e1a6424fa63e777305378697 schema:name pubmed_id
118 schema:value 12188016
119 rdf:type schema:PropertyValue
120 N3bfb46317bf14618a4b5b36c940efba7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Spain
122 rdf:type schema:DefinedTerm
123 N41bc4e9627124d3f85cad96b7c4366dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Alcohol Drinking
125 rdf:type schema:DefinedTerm
126 N483be18218d04a67b9c10fece97f8d17 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Risk Factors
128 rdf:type schema:DefinedTerm
129 N48a7ada6e89d4d01b4cedb571265d56d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Body Mass Index
131 rdf:type schema:DefinedTerm
132 N536c9373948f4a1688481843646ad4ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Fibrinogen
134 rdf:type schema:DefinedTerm
135 N56a6c94b67fb4795a1e16c30817d67b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Aged
137 rdf:type schema:DefinedTerm
138 N5c7d0b7f98264659a69491ed56e6ca85 schema:issueNumber 10
139 rdf:type schema:PublicationIssue
140 N6155e5f476fa46e1b1892e3cb3a3659a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Male
142 rdf:type schema:DefinedTerm
143 N74d520e79a92410d920e035648dbbaf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Statistics, Nonparametric
145 rdf:type schema:DefinedTerm
146 N8046596b360a491fad60452f45141d63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Surveys and Questionnaires
148 rdf:type schema:DefinedTerm
149 N85a9992a93e04c40bba88ba341fd6b1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Analysis of Variance
151 rdf:type schema:DefinedTerm
152 N96f9ab5a1e6d4d46a09bee8027b9a28a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Sex Factors
154 rdf:type schema:DefinedTerm
155 N98d8766a015a4fb492cdb82d031c35b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Humans
157 rdf:type schema:DefinedTerm
158 Na78d0dbf53ed41bb94a9d7fd7bb5c105 rdf:first sg:person.01166213677.43
159 rdf:rest rdf:nil
160 Na8775e61b17f4da1a56007157ac45e48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Middle Aged
162 rdf:type schema:DefinedTerm
163 Na8b483d4742d47e1827e16689d654bb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Cross-Sectional Studies
165 rdf:type schema:DefinedTerm
166 Nac7258e748da45f0965764e077605d09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Age Factors
168 rdf:type schema:DefinedTerm
169 Nbba2bed4870e4a399967d377b0002184 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Female
171 rdf:type schema:DefinedTerm
172 Nc2b9976a68cf450781e2b7d9ae48c83b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Cardiovascular Diseases
174 rdf:type schema:DefinedTerm
175 Nc6944672600b4134a9b6eb71e5eba62a rdf:first sg:person.0655635430.50
176 rdf:rest Na78d0dbf53ed41bb94a9d7fd7bb5c105
177 Nc99aeb348b704b20b946fd0ac41dca27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Linear Models
179 rdf:type schema:DefinedTerm
180 Ncb4c0c68145a42a788b282ed0317aed5 schema:affiliation grid-institutes:grid.5612.0
181 schema:familyName Isabel Covas
182 schema:givenName María
183 rdf:type schema:Person
184 Nea954108181f45a9b54dd8c14afed316 rdf:first sg:person.01363417253.35
185 rdf:rest N245b364c3e9144fd94800e8d9c99d30d
186 Nf5463c723ca447329501757c318d38f0 rdf:first Ncb4c0c68145a42a788b282ed0317aed5
187 rdf:rest Nc6944672600b4134a9b6eb71e5eba62a
188 Nf6ec2a1315d04100b14f54a897ca1fe3 schema:name Springer Nature - SN SciGraph project
189 rdf:type schema:Organization
190 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
191 schema:name Medical and Health Sciences
192 rdf:type schema:DefinedTerm
193 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
194 schema:name Public Health and Health Services
195 rdf:type schema:DefinedTerm
196 sg:journal.1095636 schema:issn 0393-2990
197 1573-7284
198 schema:name European Journal of Epidemiology
199 schema:publisher Springer Nature
200 rdf:type schema:Periodical
201 sg:person.01166213677.43 schema:affiliation grid-institutes:grid.5612.0
202 schema:familyName Marrugat
203 schema:givenName Jaume
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166213677.43
205 rdf:type schema:Person
206 sg:person.01315216030.42 schema:affiliation grid-institutes:grid.5612.0
207 schema:familyName Elosua
208 schema:givenName Roberto
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315216030.42
210 rdf:type schema:Person
211 sg:person.01363417253.35 schema:affiliation grid-institutes:grid.5612.0
212 schema:familyName Nascetti
213 schema:givenName Simona
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363417253.35
215 rdf:type schema:Person
216 sg:person.0655635430.50 schema:affiliation grid-institutes:grid.5612.0
217 schema:familyName Sentí
218 schema:givenName Mariano
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655635430.50
220 rdf:type schema:Person
221 sg:person.0761334234.50 schema:affiliation grid-institutes:grid.5612.0
222 schema:familyName Pena
223 schema:givenName Araceli
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761334234.50
225 rdf:type schema:Person
226 sg:pub.10.1038/339301a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006694926
227 https://doi.org/10.1038/339301a0
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/339303a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036736565
230 https://doi.org/10.1038/339303a0
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/sj.ijo.0800421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051739689
233 https://doi.org/10.1038/sj.ijo.0800421
234 rdf:type schema:CreativeWork
235 grid-institutes:grid.5612.0 schema:alternateName Unitat de Lipids i Epidemiologia Cardiovascular, Institut Municipal d'Investigació Mèdica, Spain
236 Universitat Pompeu Fabra, Barcelona, Spain
237 schema:name Centro per lo studio dell' arteriosclerosi e delle malattie dismetaboliche GC Descovich, Policlinico S Orsola-Malpighi, Bologna, Italy
238 Unitat de Lipids i Epidemiologia Cardiovascular, Institut Municipal d'Investigació Mèdica, Spain
239 Universitat Pompeu Fabra, Barcelona, Spain
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...