Global Climatic Impacts of a Collapse of the Atlantic Thermohaline Circulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-08

AUTHORS

Michael Vellinga, Richard A. Wood

ABSTRACT

Part of the uncertainty in predictions by climate models results fromlimited knowledge of the stability of the thermohaline circulation ofthe ocean. Here we provide estimates of the response of pre-industrial surface climatevariables should the thermohalinecirculation in the Atlantic Ocean collapse. For this we have usedHadCM3, an ocean-atmosphere general circulation model that is run without fluxadjustments. In this model a temporary collapse was forced by applying a strong initial freshening to the top layers of the NorthAtlantic. In the first five decades after the collapse surface air temperatureresponse is dominated by cooling of much of the NorthernHemisphere (locally up to 8 °C, 1–2 °C on average) and weakwarming of theSouthern Hemisphere (locally up to 1 °C, 0.2 °C onaverage). Response is strongest around the North Atlantic but significant changesoccur over the entire globe and highlight rapidteleconnections.Precipitation is reduced over large parts of the Northern Hemisphere.A southward shift of the IntertropicalConvergence Zone over the Atlantic and eastern Pacific createschanges in precipitation that are particularly large in South America andAfrica. Colder and drier conditions in much of the Northern Hemisphere reducesoil moisture and net primary productivity of the terrestrial vegetation. Thisis only partlycompensated by more productivity in the Southern Hemisphere.The total global net primary productivity by the vegetation decreases by5%. It should be noted, however, that in this version of the model thevegetation distribution cannotchange, and atmospheric carbon levels are also fixed. After about 100 yearsthe model's thermohaline circulation has largelyrecovered, and most climatic anomalies disappear. More... »

PAGES

251-267

References to SciGraph publications

  • 1999-05. The Use of Indices to Identify Changes in Climatic Extremes in CLIMATIC CHANGE
  • 2001-07. CLIMBER-2: a climate system model of intermediate complexity. Part II: model sensitivity in CLIMATE DYNAMICS
  • 1997-08. Influence of CO2 emission rates on the stability of the thermohaline circulation in NATURE
  • 2000-11. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data in NATURE
  • 2001-01. The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments in CLIMATE DYNAMICS
  • 1995-11. Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean in NATURE
  • 1986-09. High-latitude salinity effects and interhemispheric thermohaline circulations in NATURE
  • 1997-07. The stability of the North Atlantic thermohaline circulation in a coupled ocean-atmosphere general circulation model in CLIMATE DYNAMICS
  • 1999-06. Shifting seas in the greenhouse? in NATURE
  • 2003-02-18. Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios in CLIMATE DYNAMICS
  • 2000-10. Preserving the Ocean Circulation: Implications for Climate Policy in CLIMATIC CHANGE
  • 1999-06. Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model in NATURE
  • 2000-02. The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3 in CLIMATE DYNAMICS
  • 1998-05. Simulated response of the ocean carbon cycle to anthropogenic climate warming in NATURE
  • 2000-02. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments in CLIMATE DYNAMICS
  • 2000-11. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model in NATURE
  • 2000-08. The Thermohaline Ocean Circulation: A System with Dangerous Thresholds? in CLIMATIC CHANGE
  • 1999-10. Long-Term Global Warming Scenarios Computed with an Efficient Coupled Climate Model in CLIMATIC CHANGE
  • 1999-03. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity in CLIMATE DYNAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1016168827653

    DOI

    http://dx.doi.org/10.1023/a:1016168827653

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046187375


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oceanography", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Met Office, Hadley Centre for Climate Prediction and Research, London Road, RG12 2SY, Bracknell, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office, Hadley Centre for Climate Prediction and Research, London Road, RG12 2SY, Bracknell, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vellinga", 
            "givenName": "Michael", 
            "id": "sg:person.07551344707.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07551344707.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Met Office, Hadley Centre for Climate Prediction and Research, London Road, RG12 2SY, Bracknell, United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office, Hadley Centre for Climate Prediction and Research, London Road, RG12 2SY, Bracknell, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wood", 
            "givenName": "Richard A.", 
            "id": "sg:person.015637061237.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015637061237.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/35044048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034572182", 
              "https://doi.org/10.1038/35044048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820000144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018065889", 
              "https://doi.org/10.1007/s003820000144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/323301a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040885894", 
              "https://doi.org/10.1038/323301a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/42224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033418695", 
              "https://doi.org/10.1038/42224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/30455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002579097", 
              "https://doi.org/10.1038/30455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820000094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037483061", 
              "https://doi.org/10.1007/s003820000094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35041539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011328414", 
              "https://doi.org/10.1038/35041539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018345935", 
              "https://doi.org/10.1007/s003820050276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005648404783", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028923130", 
              "https://doi.org/10.1023/a:1005648404783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027980956", 
              "https://doi.org/10.1007/s003820050169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002170907", 
              "https://doi.org/10.1007/s003820050009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-002-0296-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085138454", 
              "https://doi.org/10.1007/s00382-002-0296-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/378165a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019547367", 
              "https://doi.org/10.1038/378165a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/21170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011881242", 
              "https://doi.org/10.1038/21170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005468316392", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002364713", 
              "https://doi.org/10.1023/a:1005468316392"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005474526406", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042234603", 
              "https://doi.org/10.1023/a:1005474526406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/21066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035575180", 
              "https://doi.org/10.1038/21066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015242699", 
              "https://doi.org/10.1007/s003820050010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005624909182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031461233", 
              "https://doi.org/10.1023/a:1005624909182"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-08", 
        "datePublishedReg": "2002-08-01", 
        "description": "Part of the uncertainty in predictions by climate models results fromlimited knowledge of the stability of the thermohaline circulation ofthe ocean. Here we provide estimates of the response of pre-industrial surface climatevariables should the thermohalinecirculation in the Atlantic Ocean collapse. For this we have usedHadCM3, an ocean-atmosphere general circulation model that is run without fluxadjustments. In this model a temporary collapse was forced by applying a strong initial freshening to the top layers of the NorthAtlantic. In the first five decades after the collapse surface air temperatureresponse is dominated by cooling of much of the NorthernHemisphere (locally up to 8 \u00b0C, 1\u20132 \u00b0C on average) and weakwarming of theSouthern Hemisphere (locally up to 1 \u00b0C, 0.2 \u00b0C onaverage). Response is strongest around the North Atlantic but significant changesoccur over the entire globe and highlight rapidteleconnections.Precipitation is reduced over large parts of the Northern Hemisphere.A southward shift of the IntertropicalConvergence Zone over the Atlantic and eastern Pacific createschanges in precipitation that are particularly large in South America andAfrica. Colder and drier conditions in much of the Northern Hemisphere reducesoil moisture and net primary productivity of the terrestrial vegetation. Thisis only partlycompensated by more productivity in the Southern Hemisphere.The total global net primary productivity by the vegetation decreases by5%. It should be noted, however, that in this version of the model thevegetation distribution cannotchange, and atmospheric carbon levels are also fixed. After about 100 yearsthe model's thermohaline circulation has largelyrecovered, and most climatic anomalies disappear.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1016168827653", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1028211", 
            "issn": [
              "0165-0009", 
              "1573-1480"
            ], 
            "name": "Climatic Change", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "54"
          }
        ], 
        "keywords": [
          "thermohaline circulation", 
          "net primary productivity", 
          "Northern Hemisphere", 
          "primary productivity", 
          "ocean-atmosphere general circulation model", 
          "global net primary productivity", 
          "model\u2019s thermohaline circulation", 
          "Atlantic thermohaline circulation", 
          "general circulation model", 
          "global climatic impacts", 
          "atmospheric carbon levels", 
          "southward shift", 
          "climate models", 
          "circulation model", 
          "North Atlantic", 
          "climatic anomalies", 
          "climatic impacts", 
          "Southern Hemisphere", 
          "terrestrial vegetation", 
          "entire globe", 
          "dry conditions", 
          "hemisphere", 
          "Atlantic", 
          "temporary collapse", 
          "precipitation", 
          "carbon levels", 
          "vegetation", 
          "circulation", 
          "large part", 
          "NorthAtlantic", 
          "freshening", 
          "Ocean", 
          "collapse", 
          "top layer", 
          "productivity", 
          "zone", 
          "anomalies", 
          "moisture", 
          "part", 
          "estimates", 
          "uncertainty", 
          "globe", 
          "model", 
          "Thisis", 
          "layer", 
          "decades", 
          "impact", 
          "prediction", 
          "shift", 
          "conditions", 
          "more productivity", 
          "response", 
          "version", 
          "levels", 
          "knowledge", 
          "stability"
        ], 
        "name": "Global Climatic Impacts of a Collapse of the Atlantic Thermohaline Circulation", 
        "pagination": "251-267", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046187375"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1016168827653"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1016168827653", 
          "https://app.dimensions.ai/details/publication/pub.1046187375"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_350.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1016168827653"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1016168827653'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1016168827653'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1016168827653'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1016168827653'


     

    This table displays all metadata directly associated to this object as RDF triples.

    196 TRIPLES      21 PREDICATES      100 URIs      73 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1016168827653 schema:about anzsrc-for:04
    2 anzsrc-for:0405
    3 schema:author N54f8383a7c304de0a77c94bffba8d5ad
    4 schema:citation sg:pub.10.1007/s00382-002-0296-y
    5 sg:pub.10.1007/s003820000094
    6 sg:pub.10.1007/s003820000144
    7 sg:pub.10.1007/s003820050009
    8 sg:pub.10.1007/s003820050010
    9 sg:pub.10.1007/s003820050169
    10 sg:pub.10.1007/s003820050276
    11 sg:pub.10.1023/a:1005468316392
    12 sg:pub.10.1023/a:1005474526406
    13 sg:pub.10.1023/a:1005624909182
    14 sg:pub.10.1023/a:1005648404783
    15 sg:pub.10.1038/21066
    16 sg:pub.10.1038/21170
    17 sg:pub.10.1038/30455
    18 sg:pub.10.1038/323301a0
    19 sg:pub.10.1038/35041539
    20 sg:pub.10.1038/35044048
    21 sg:pub.10.1038/378165a0
    22 sg:pub.10.1038/42224
    23 schema:datePublished 2002-08
    24 schema:datePublishedReg 2002-08-01
    25 schema:description Part of the uncertainty in predictions by climate models results fromlimited knowledge of the stability of the thermohaline circulation ofthe ocean. Here we provide estimates of the response of pre-industrial surface climatevariables should the thermohalinecirculation in the Atlantic Ocean collapse. For this we have usedHadCM3, an ocean-atmosphere general circulation model that is run without fluxadjustments. In this model a temporary collapse was forced by applying a strong initial freshening to the top layers of the NorthAtlantic. In the first five decades after the collapse surface air temperatureresponse is dominated by cooling of much of the NorthernHemisphere (locally up to 8 °C, 1–2 °C on average) and weakwarming of theSouthern Hemisphere (locally up to 1 °C, 0.2 °C onaverage). Response is strongest around the North Atlantic but significant changesoccur over the entire globe and highlight rapidteleconnections.Precipitation is reduced over large parts of the Northern Hemisphere.A southward shift of the IntertropicalConvergence Zone over the Atlantic and eastern Pacific createschanges in precipitation that are particularly large in South America andAfrica. Colder and drier conditions in much of the Northern Hemisphere reducesoil moisture and net primary productivity of the terrestrial vegetation. Thisis only partlycompensated by more productivity in the Southern Hemisphere.The total global net primary productivity by the vegetation decreases by5%. It should be noted, however, that in this version of the model thevegetation distribution cannotchange, and atmospheric carbon levels are also fixed. After about 100 yearsthe model's thermohaline circulation has largelyrecovered, and most climatic anomalies disappear.
    26 schema:genre article
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N075744db76f643d4a6af43da6b7f7717
    29 Nad664754ff1c492b8d211205e8f899d3
    30 sg:journal.1028211
    31 schema:keywords Atlantic
    32 Atlantic thermohaline circulation
    33 North Atlantic
    34 NorthAtlantic
    35 Northern Hemisphere
    36 Ocean
    37 Southern Hemisphere
    38 Thisis
    39 anomalies
    40 atmospheric carbon levels
    41 carbon levels
    42 circulation
    43 circulation model
    44 climate models
    45 climatic anomalies
    46 climatic impacts
    47 collapse
    48 conditions
    49 decades
    50 dry conditions
    51 entire globe
    52 estimates
    53 freshening
    54 general circulation model
    55 global climatic impacts
    56 global net primary productivity
    57 globe
    58 hemisphere
    59 impact
    60 knowledge
    61 large part
    62 layer
    63 levels
    64 model
    65 model’s thermohaline circulation
    66 moisture
    67 more productivity
    68 net primary productivity
    69 ocean-atmosphere general circulation model
    70 part
    71 precipitation
    72 prediction
    73 primary productivity
    74 productivity
    75 response
    76 shift
    77 southward shift
    78 stability
    79 temporary collapse
    80 terrestrial vegetation
    81 thermohaline circulation
    82 top layer
    83 uncertainty
    84 vegetation
    85 version
    86 zone
    87 schema:name Global Climatic Impacts of a Collapse of the Atlantic Thermohaline Circulation
    88 schema:pagination 251-267
    89 schema:productId Ne1506468d866450dbd8c94c6ead7dc3f
    90 Nf493290d13f64d01971ae656206787c3
    91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046187375
    92 https://doi.org/10.1023/a:1016168827653
    93 schema:sdDatePublished 2022-09-02T15:51
    94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    95 schema:sdPublisher N74f25fbc1d8f4a8a8f42a40345da0a0f
    96 schema:url https://doi.org/10.1023/a:1016168827653
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset articles
    99 rdf:type schema:ScholarlyArticle
    100 N075744db76f643d4a6af43da6b7f7717 schema:issueNumber 3
    101 rdf:type schema:PublicationIssue
    102 N54f8383a7c304de0a77c94bffba8d5ad rdf:first sg:person.07551344707.62
    103 rdf:rest N660105b92d2a4689a1418a37a7127299
    104 N660105b92d2a4689a1418a37a7127299 rdf:first sg:person.015637061237.00
    105 rdf:rest rdf:nil
    106 N74f25fbc1d8f4a8a8f42a40345da0a0f schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 Nad664754ff1c492b8d211205e8f899d3 schema:volumeNumber 54
    109 rdf:type schema:PublicationVolume
    110 Ne1506468d866450dbd8c94c6ead7dc3f schema:name dimensions_id
    111 schema:value pub.1046187375
    112 rdf:type schema:PropertyValue
    113 Nf493290d13f64d01971ae656206787c3 schema:name doi
    114 schema:value 10.1023/a:1016168827653
    115 rdf:type schema:PropertyValue
    116 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Earth Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Oceanography
    121 rdf:type schema:DefinedTerm
    122 sg:journal.1028211 schema:issn 0165-0009
    123 1573-1480
    124 schema:name Climatic Change
    125 schema:publisher Springer Nature
    126 rdf:type schema:Periodical
    127 sg:person.015637061237.00 schema:affiliation grid-institutes:grid.17100.37
    128 schema:familyName Wood
    129 schema:givenName Richard A.
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015637061237.00
    131 rdf:type schema:Person
    132 sg:person.07551344707.62 schema:affiliation grid-institutes:grid.17100.37
    133 schema:familyName Vellinga
    134 schema:givenName Michael
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07551344707.62
    136 rdf:type schema:Person
    137 sg:pub.10.1007/s00382-002-0296-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085138454
    138 https://doi.org/10.1007/s00382-002-0296-y
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s003820000094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037483061
    141 https://doi.org/10.1007/s003820000094
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s003820000144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018065889
    144 https://doi.org/10.1007/s003820000144
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s003820050009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170907
    147 https://doi.org/10.1007/s003820050009
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s003820050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015242699
    150 https://doi.org/10.1007/s003820050010
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s003820050169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027980956
    153 https://doi.org/10.1007/s003820050169
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s003820050276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018345935
    156 https://doi.org/10.1007/s003820050276
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1023/a:1005468316392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002364713
    159 https://doi.org/10.1023/a:1005468316392
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1023/a:1005474526406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042234603
    162 https://doi.org/10.1023/a:1005474526406
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1023/a:1005624909182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031461233
    165 https://doi.org/10.1023/a:1005624909182
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1023/a:1005648404783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028923130
    168 https://doi.org/10.1023/a:1005648404783
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/21066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035575180
    171 https://doi.org/10.1038/21066
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/21170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011881242
    174 https://doi.org/10.1038/21170
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/30455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002579097
    177 https://doi.org/10.1038/30455
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/323301a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040885894
    180 https://doi.org/10.1038/323301a0
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/35041539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011328414
    183 https://doi.org/10.1038/35041539
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/35044048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034572182
    186 https://doi.org/10.1038/35044048
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/378165a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019547367
    189 https://doi.org/10.1038/378165a0
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/42224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033418695
    192 https://doi.org/10.1038/42224
    193 rdf:type schema:CreativeWork
    194 grid-institutes:grid.17100.37 schema:alternateName Met Office, Hadley Centre for Climate Prediction and Research, London Road, RG12 2SY, Bracknell, United Kingdom
    195 schema:name Met Office, Hadley Centre for Climate Prediction and Research, London Road, RG12 2SY, Bracknell, United Kingdom
    196 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...