Microfabrication Technology for Vascularized Tissue Engineering View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-07

AUTHORS

Jeffrey T. Borenstein, H. Terai, Kevin R. King, E.J. Weinberg, M.R. Kaazempur-Mofrad, J.P. Vacanti

ABSTRACT

This work describes the application of advanced microfabrication technologies including silicon micromachining and polymer replica molding towards the field of tissue engineering of complex tissues and organs. As a general approach, tissue engineering of skin, bone and cartilage using cell transplantation on biodegradable matrices has achieved great success. However, such techniques encounter difficulties when applied to complex tissues and vital organs. The principal limitation for such applications is the lack of an intrinsic blood supply for the tissue engineered organ, which experiences significant cell death when the tissue thickness is increased above the 1–2 mm range. In this work, the concept of microfabricated scaffolds is introduced, with the goal of producing organ templates with feature resolution of 1 micron, well in excess of that necessary to fashion the capillaries which comprise the microcirculation of the organ. Initial efforts have resulted in high resolution biocompatible polymer scaffolds produced by replica molding from silicon micromachined template wafers. These scaffolds have been successfully seeded with endothelial cells in channels with dimensions as small as the capillaries. More... »

PAGES

167-175

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1016040212127

DOI

http://dx.doi.org/10.1023/a:1016040212127

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023214456


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Draper Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.417533.7", 
          "name": [
            "MEMS Technology Group, Charles Stark Draper Laboratory, Cambridge, MA", 
            "Center for the Integration of Medicine and Innovative Technology, Cambridge, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borenstein", 
        "givenName": "Jeffrey T.", 
        "id": "sg:person.0771277613.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771277613.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA", 
            "Center for the Integration of Medicine and Innovative Technology, Cambridge, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Terai", 
        "givenName": "H.", 
        "id": "sg:person.0770317723.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770317723.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "MEMS Technology Group, Charles Stark Draper Laboratory, Cambridge, MA", 
            "Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "King", 
        "givenName": "Kevin R.", 
        "id": "sg:person.07453043012.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07453043012.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "MEMS Technology Group, Charles Stark Draper Laboratory, Cambridge, MA", 
            "Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weinberg", 
        "givenName": "E.J.", 
        "id": "sg:person.01133043001.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133043001.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA", 
            "Center for the Integration of Medicine and Innovative Technology, Cambridge, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaazempur-Mofrad", 
        "givenName": "M.R.", 
        "id": "sg:person.0763073634.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763073634.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA", 
            "Center for the Integration of Medicine and Innovative Technology, Cambridge, MA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vacanti", 
        "givenName": "J.P.", 
        "id": "sg:person.01351702744.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351702744.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4615-8186-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004665387", 
          "https://doi.org/10.1007/978-1-4615-8186-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-8186-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004665387", 
          "https://doi.org/10.1007/978-1-4615-8186-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-8186-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004665387", 
          "https://doi.org/10.1007/978-1-4615-8186-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-4636(199702)34:2<189::aid-jbm8>3.0.co;2-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009679679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.290.5496.1536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013156889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(99)90247-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022195626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1053-2498(00)00439-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022419653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1387591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026859870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-4636(199805)40:2<291::aid-jbm14>3.0.co;2-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037587760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.359340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043586860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/excr.1996.0306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045734956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/107632700320739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059205879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.704257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.591395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062201438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.276.5317.1425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062556863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.1994.267.6.h2100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082518327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.1993.265.1.h350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082766040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jappl.1996.81.5.2123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083007781"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-07", 
    "datePublishedReg": "2002-07-01", 
    "description": "This work describes the application of advanced microfabrication technologies including silicon micromachining and polymer replica molding towards the field of tissue engineering of complex tissues and organs. As a general approach, tissue engineering of skin, bone and cartilage using cell transplantation on biodegradable matrices has achieved great success. However, such techniques encounter difficulties when applied to complex tissues and vital organs. The principal limitation for such applications is the lack of an intrinsic blood supply for the tissue engineered organ, which experiences significant cell death when the tissue thickness is increased above the 1\u20132 mm range. In this work, the concept of microfabricated scaffolds is introduced, with the goal of producing organ templates with feature resolution of 1 micron, well in excess of that necessary to fashion the capillaries which comprise the microcirculation of the organ. Initial efforts have resulted in high resolution biocompatible polymer scaffolds produced by replica molding from silicon micromachined template wafers. These scaffolds have been successfully seeded with endothelial cells in channels with dimensions as small as the capillaries.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1016040212127", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1021020", 
        "issn": [
          "1387-2176", 
          "1572-8781"
        ], 
        "name": "Biomedical Microdevices", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Microfabrication Technology for Vascularized Tissue Engineering", 
    "pagination": "167-175", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6e996a1c3f19c7533b50312e6ded6d3c437d01af25a5cfd836077fda5138e513"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1016040212127"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023214456"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1016040212127", 
      "https://app.dimensions.ai/details/publication/pub.1023214456"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1016040212127"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1016040212127'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1016040212127'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1016040212127'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1016040212127'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1016040212127 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author N3a2318f418e649b787c8daf076a18dd6
4 schema:citation sg:pub.10.1007/978-1-4615-8186-4
5 https://doi.org/10.1002/(sici)1097-4636(199702)34:2<189::aid-jbm8>3.0.co;2-m
6 https://doi.org/10.1002/(sici)1097-4636(199805)40:2<291::aid-jbm14>3.0.co;2-p
7 https://doi.org/10.1006/excr.1996.0306
8 https://doi.org/10.1016/s0140-6736(99)90247-7
9 https://doi.org/10.1016/s1053-2498(00)00439-3
10 https://doi.org/10.1063/1.1387591
11 https://doi.org/10.1089/107632700320739
12 https://doi.org/10.1109/5.704257
13 https://doi.org/10.1116/1.591395
14 https://doi.org/10.1117/12.359340
15 https://doi.org/10.1126/science.276.5317.1425
16 https://doi.org/10.1126/science.290.5496.1536
17 https://doi.org/10.1152/ajpheart.1993.265.1.h350
18 https://doi.org/10.1152/ajpheart.1994.267.6.h2100
19 https://doi.org/10.1152/jappl.1996.81.5.2123
20 schema:datePublished 2002-07
21 schema:datePublishedReg 2002-07-01
22 schema:description This work describes the application of advanced microfabrication technologies including silicon micromachining and polymer replica molding towards the field of tissue engineering of complex tissues and organs. As a general approach, tissue engineering of skin, bone and cartilage using cell transplantation on biodegradable matrices has achieved great success. However, such techniques encounter difficulties when applied to complex tissues and vital organs. The principal limitation for such applications is the lack of an intrinsic blood supply for the tissue engineered organ, which experiences significant cell death when the tissue thickness is increased above the 1–2 mm range. In this work, the concept of microfabricated scaffolds is introduced, with the goal of producing organ templates with feature resolution of 1 micron, well in excess of that necessary to fashion the capillaries which comprise the microcirculation of the organ. Initial efforts have resulted in high resolution biocompatible polymer scaffolds produced by replica molding from silicon micromachined template wafers. These scaffolds have been successfully seeded with endothelial cells in channels with dimensions as small as the capillaries.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N715deb1634154fbaa65bb1e9d3c272d1
27 Nba6d6e4926a241b2acf83cbb5962e621
28 sg:journal.1021020
29 schema:name Microfabrication Technology for Vascularized Tissue Engineering
30 schema:pagination 167-175
31 schema:productId N7001edeea7944bc88e20129f25c72372
32 N7c7a3f0337684a6e8a3d7439d4370e6b
33 N8b9a116a8aaa457b9f1c295eb0c834a4
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023214456
35 https://doi.org/10.1023/a:1016040212127
36 schema:sdDatePublished 2019-04-10T14:59
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Ndc50756579e043f5a540107cde3dd4b7
39 schema:url http://link.springer.com/10.1023/A:1016040212127
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N19ddf53674724aa79ae413adbc421318 schema:name Center for the Integration of Medicine and Innovative Technology, Cambridge, MA
44 Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
45 rdf:type schema:Organization
46 N3a2318f418e649b787c8daf076a18dd6 rdf:first sg:person.0771277613.05
47 rdf:rest Na39c1aaea81d400eba2b917cede71c90
48 N49a0ee4ec0dd4400ad6214b1ea91a830 rdf:first sg:person.01351702744.88
49 rdf:rest rdf:nil
50 N7001edeea7944bc88e20129f25c72372 schema:name doi
51 schema:value 10.1023/a:1016040212127
52 rdf:type schema:PropertyValue
53 N715deb1634154fbaa65bb1e9d3c272d1 schema:issueNumber 3
54 rdf:type schema:PublicationIssue
55 N7c7a3f0337684a6e8a3d7439d4370e6b schema:name dimensions_id
56 schema:value pub.1023214456
57 rdf:type schema:PropertyValue
58 N8b9a116a8aaa457b9f1c295eb0c834a4 schema:name readcube_id
59 schema:value 6e996a1c3f19c7533b50312e6ded6d3c437d01af25a5cfd836077fda5138e513
60 rdf:type schema:PropertyValue
61 N8fa3368b7a4e46c08e6b325f2d9adf70 rdf:first sg:person.0763073634.96
62 rdf:rest N49a0ee4ec0dd4400ad6214b1ea91a830
63 N927a3361eca54d5796eeb276c2aeb77b rdf:first sg:person.01133043001.03
64 rdf:rest N8fa3368b7a4e46c08e6b325f2d9adf70
65 Na39c1aaea81d400eba2b917cede71c90 rdf:first sg:person.0770317723.66
66 rdf:rest Nd126eebda9b843238450cd271cd22c26
67 Nba6d6e4926a241b2acf83cbb5962e621 schema:volumeNumber 4
68 rdf:type schema:PublicationVolume
69 Nd126eebda9b843238450cd271cd22c26 rdf:first sg:person.07453043012.14
70 rdf:rest N927a3361eca54d5796eeb276c2aeb77b
71 Ndc50756579e043f5a540107cde3dd4b7 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Ne2f134528b104e42ad495005161a7a34 schema:name Center for the Integration of Medicine and Innovative Technology, Cambridge, MA
74 Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
75 rdf:type schema:Organization
76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
77 schema:name Engineering
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
80 schema:name Biomedical Engineering
81 rdf:type schema:DefinedTerm
82 sg:journal.1021020 schema:issn 1387-2176
83 1572-8781
84 schema:name Biomedical Microdevices
85 rdf:type schema:Periodical
86 sg:person.01133043001.03 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
87 schema:familyName Weinberg
88 schema:givenName E.J.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133043001.03
90 rdf:type schema:Person
91 sg:person.01351702744.88 schema:affiliation Ne2f134528b104e42ad495005161a7a34
92 schema:familyName Vacanti
93 schema:givenName J.P.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351702744.88
95 rdf:type schema:Person
96 sg:person.07453043012.14 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
97 schema:familyName King
98 schema:givenName Kevin R.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07453043012.14
100 rdf:type schema:Person
101 sg:person.0763073634.96 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
102 schema:familyName Kaazempur-Mofrad
103 schema:givenName M.R.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763073634.96
105 rdf:type schema:Person
106 sg:person.0770317723.66 schema:affiliation N19ddf53674724aa79ae413adbc421318
107 schema:familyName Terai
108 schema:givenName H.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770317723.66
110 rdf:type schema:Person
111 sg:person.0771277613.05 schema:affiliation https://www.grid.ac/institutes/grid.417533.7
112 schema:familyName Borenstein
113 schema:givenName Jeffrey T.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771277613.05
115 rdf:type schema:Person
116 sg:pub.10.1007/978-1-4615-8186-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004665387
117 https://doi.org/10.1007/978-1-4615-8186-4
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/(sici)1097-4636(199702)34:2<189::aid-jbm8>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1009679679
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/(sici)1097-4636(199805)40:2<291::aid-jbm14>3.0.co;2-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1037587760
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1006/excr.1996.0306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045734956
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0140-6736(99)90247-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022195626
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s1053-2498(00)00439-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022419653
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.1387591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026859870
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1089/107632700320739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059205879
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/5.704257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179924
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1116/1.591395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062201438
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1117/12.359340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043586860
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1126/science.276.5317.1425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062556863
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1126/science.290.5496.1536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013156889
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1152/ajpheart.1993.265.1.h350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082766040
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1152/ajpheart.1994.267.6.h2100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082518327
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1152/jappl.1996.81.5.2123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083007781
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
150 schema:name Center for the Integration of Medicine and Innovative Technology, Cambridge, MA
151 MEMS Technology Group, Charles Stark Draper Laboratory, Cambridge, MA
152 Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA
153 rdf:type schema:Organization
154 https://www.grid.ac/institutes/grid.417533.7 schema:alternateName Draper Laboratory
155 schema:name Center for the Integration of Medicine and Innovative Technology, Cambridge, MA
156 MEMS Technology Group, Charles Stark Draper Laboratory, Cambridge, MA
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...