Application of Neural Computing in Pharmaceutical Product Development View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-10

AUTHORS

Ajaz S. Hussain, Xuanqiang Yu, Robert D. Johnson

ABSTRACT

Neural computing technology is capable of solving problems involving complex pattern recognition. This technology is applied here to pharmaceutical product development. The most commonly used computational algorithm, the delta back-propagation network, was utilized to recognize the complex relationship between the formulation variables and the in vitro drug release parameters for a hydrophilic matrix capsule system. This new computational technique was also compared with the response surface methodology (RSM). Artificial neural network (ANN) analysis was able to predict the response values for a series of validation experiments more precisely than RSM. ANN may offer an alternative to RSM because it allows for the development of a system that can incorporate literature and experimental data to solve common problems in the pharmaceutical industry. More... »

PAGES

1248-1252

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1015843527138

DOI

http://dx.doi.org/10.1023/a:1015843527138

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002628904

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/1796042


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Capsules", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemistry, Pharmaceutical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Excipients", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks, Computer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regression Analysis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Division of Pharmaceutics and Drug Delivery Systems, College of Pharmacy, University of Cincinnati-Medical Center, 45267-0004, Cincinnati, Ohio", 
          "id": "http://www.grid.ac/institutes/grid.413561.4", 
          "name": [
            "The Division of Pharmaceutics and Drug Delivery Systems, College of Pharmacy, University of Cincinnati-Medical Center, 45267-0004, Cincinnati, Ohio"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hussain", 
        "givenName": "Ajaz S.", 
        "id": "sg:person.0751630752.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751630752.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Division of Pharmaceutics and Drug Delivery Systems, College of Pharmacy, University of Cincinnati-Medical Center, 45267-0004, Cincinnati, Ohio", 
          "id": "http://www.grid.ac/institutes/grid.413561.4", 
          "name": [
            "The Division of Pharmaceutics and Drug Delivery Systems, College of Pharmacy, University of Cincinnati-Medical Center, 45267-0004, Cincinnati, Ohio"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Xuanqiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Division of Pharmaceutics and Drug Delivery Systems, College of Pharmacy, University of Cincinnati-Medical Center, 45267-0004, Cincinnati, Ohio", 
          "id": "http://www.grid.ac/institutes/grid.413561.4", 
          "name": [
            "The Division of Pharmaceutics and Drug Delivery Systems, College of Pharmacy, University of Cincinnati-Medical Center, 45267-0004, Cincinnati, Ohio"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johnson", 
        "givenName": "Robert D.", 
        "id": "sg:person.01002066104.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002066104.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02478259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028715170", 
          "https://doi.org/10.1007/bf02478259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015911721455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031324395", 
          "https://doi.org/10.1023/a:1015911721455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02459570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026163953", 
          "https://doi.org/10.1007/bf02459570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015972007342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013490742", 
          "https://doi.org/10.1023/a:1015972007342"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-10", 
    "datePublishedReg": "1991-10-01", 
    "description": "Neural computing technology is capable of solving problems involving complex pattern recognition. This technology is applied here to pharmaceutical product development. The most commonly used computational algorithm, the delta back-propagation network, was utilized to recognize the complex relationship between the formulation variables and the in vitro drug release parameters for a hydrophilic matrix capsule system. This new computational technique was also compared with the response surface methodology (RSM). Artificial neural network (ANN) analysis was able to predict the response values for a series of validation experiments more precisely than RSM. ANN may offer an alternative to RSM because it allows for the development of a system that can incorporate literature and experimental data to solve common problems in the pharmaceutical industry.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1015843527138", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094644", 
        "issn": [
          "0724-8741", 
          "1573-904X"
        ], 
        "name": "Pharmaceutical Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "neural computing technology", 
      "complex pattern recognition", 
      "back-propagation network", 
      "computing technologies", 
      "neural computing", 
      "pattern recognition", 
      "neural network analysis", 
      "new computational technique", 
      "product development", 
      "artificial neural network analysis", 
      "computational algorithm", 
      "computational techniques", 
      "network analysis", 
      "pharmaceutical product development", 
      "computing", 
      "technology", 
      "validation experiments", 
      "ANN", 
      "algorithm", 
      "network", 
      "system", 
      "common problem", 
      "recognition", 
      "complex relationship", 
      "applications", 
      "methodology", 
      "technique", 
      "development", 
      "industry", 
      "data", 
      "experiments", 
      "response values", 
      "release parameters", 
      "capsule system", 
      "alternative", 
      "parameters", 
      "literature", 
      "analysis", 
      "variables", 
      "pharmaceutical industry", 
      "drug release parameters", 
      "experimental data", 
      "values", 
      "series", 
      "relationship", 
      "response surface methodology", 
      "surface methodology", 
      "problem", 
      "formulation variables"
    ], 
    "name": "Application of Neural Computing in Pharmaceutical Product Development", 
    "pagination": "1248-1252", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002628904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1015843527138"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "1796042"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1015843527138", 
      "https://app.dimensions.ai/details/publication/pub.1002628904"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_244.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1015843527138"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1015843527138'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1015843527138'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1015843527138'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1015843527138'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      87 URIs      75 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1015843527138 schema:about N0dd0658e5b8645d38c134894887e7bfa
2 N2308384e549c4e1b90e0c77d200ce6b3
3 N301227d50d86420ebd1ea31d1264de0c
4 N67ea99bc9bc94be0afd82af1f0d8089a
5 N7f05620a519d4be9bad88f07de3df4fd
6 N9d58e3063cab42508d6dd116f4b60549
7 Na397e45de50d426b92edbf780cb956a8
8 Nfc97f8d909834710828ac489ff5b357e
9 anzsrc-for:11
10 anzsrc-for:1115
11 schema:author N425e880bc8f74774ac8a96ab20b8f474
12 schema:citation sg:pub.10.1007/bf02459570
13 sg:pub.10.1007/bf02478259
14 sg:pub.10.1023/a:1015911721455
15 sg:pub.10.1023/a:1015972007342
16 schema:datePublished 1991-10
17 schema:datePublishedReg 1991-10-01
18 schema:description Neural computing technology is capable of solving problems involving complex pattern recognition. This technology is applied here to pharmaceutical product development. The most commonly used computational algorithm, the delta back-propagation network, was utilized to recognize the complex relationship between the formulation variables and the in vitro drug release parameters for a hydrophilic matrix capsule system. This new computational technique was also compared with the response surface methodology (RSM). Artificial neural network (ANN) analysis was able to predict the response values for a series of validation experiments more precisely than RSM. ANN may offer an alternative to RSM because it allows for the development of a system that can incorporate literature and experimental data to solve common problems in the pharmaceutical industry.
19 schema:genre article
20 schema:isAccessibleForFree false
21 schema:isPartOf N5fdf8929fd8a4d3fb4afe7c6a7442d80
22 N8aa1f9d1215641bd8ef5788fde76ca05
23 sg:journal.1094644
24 schema:keywords ANN
25 algorithm
26 alternative
27 analysis
28 applications
29 artificial neural network analysis
30 back-propagation network
31 capsule system
32 common problem
33 complex pattern recognition
34 complex relationship
35 computational algorithm
36 computational techniques
37 computing
38 computing technologies
39 data
40 development
41 drug release parameters
42 experimental data
43 experiments
44 formulation variables
45 industry
46 literature
47 methodology
48 network
49 network analysis
50 neural computing
51 neural computing technology
52 neural network analysis
53 new computational technique
54 parameters
55 pattern recognition
56 pharmaceutical industry
57 pharmaceutical product development
58 problem
59 product development
60 recognition
61 relationship
62 release parameters
63 response surface methodology
64 response values
65 series
66 surface methodology
67 system
68 technique
69 technology
70 validation experiments
71 values
72 variables
73 schema:name Application of Neural Computing in Pharmaceutical Product Development
74 schema:pagination 1248-1252
75 schema:productId N12ccfe1c84494cd8959afc833421c0cc
76 N6a84920d41a943d28b06215dfaeee477
77 Nb0ab706a319e429a9aeaeb19d695c3df
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002628904
79 https://doi.org/10.1023/a:1015843527138
80 schema:sdDatePublished 2022-08-04T16:51
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N93ff56a030794718b30de904cde5a174
83 schema:url https://doi.org/10.1023/a:1015843527138
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N0dd0658e5b8645d38c134894887e7bfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Pattern Recognition, Automated
89 rdf:type schema:DefinedTerm
90 N12ccfe1c84494cd8959afc833421c0cc schema:name doi
91 schema:value 10.1023/a:1015843527138
92 rdf:type schema:PropertyValue
93 N2308384e549c4e1b90e0c77d200ce6b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Excipients
95 rdf:type schema:DefinedTerm
96 N301227d50d86420ebd1ea31d1264de0c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Neural Networks, Computer
98 rdf:type schema:DefinedTerm
99 N425e880bc8f74774ac8a96ab20b8f474 rdf:first sg:person.0751630752.16
100 rdf:rest N83cd0875996d4d26b35c271b6f3fcf96
101 N5fdf8929fd8a4d3fb4afe7c6a7442d80 schema:issueNumber 10
102 rdf:type schema:PublicationIssue
103 N67ea99bc9bc94be0afd82af1f0d8089a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Capsules
105 rdf:type schema:DefinedTerm
106 N6a84920d41a943d28b06215dfaeee477 schema:name dimensions_id
107 schema:value pub.1002628904
108 rdf:type schema:PropertyValue
109 N7f05620a519d4be9bad88f07de3df4fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Algorithms
111 rdf:type schema:DefinedTerm
112 N83cd0875996d4d26b35c271b6f3fcf96 rdf:first Nd15d1e366961471d8d02d1ee80c18b76
113 rdf:rest Ned59e486b0954fab9e5e668ba7881582
114 N8aa1f9d1215641bd8ef5788fde76ca05 schema:volumeNumber 8
115 rdf:type schema:PublicationVolume
116 N93ff56a030794718b30de904cde5a174 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 N9d58e3063cab42508d6dd116f4b60549 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Polymers
120 rdf:type schema:DefinedTerm
121 Na397e45de50d426b92edbf780cb956a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Regression Analysis
123 rdf:type schema:DefinedTerm
124 Nb0ab706a319e429a9aeaeb19d695c3df schema:name pubmed_id
125 schema:value 1796042
126 rdf:type schema:PropertyValue
127 Nd15d1e366961471d8d02d1ee80c18b76 schema:affiliation grid-institutes:grid.413561.4
128 schema:familyName Yu
129 schema:givenName Xuanqiang
130 rdf:type schema:Person
131 Ned59e486b0954fab9e5e668ba7881582 rdf:first sg:person.01002066104.07
132 rdf:rest rdf:nil
133 Nfc97f8d909834710828ac489ff5b357e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Chemistry, Pharmaceutical
135 rdf:type schema:DefinedTerm
136 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
137 schema:name Medical and Health Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
140 schema:name Pharmacology and Pharmaceutical Sciences
141 rdf:type schema:DefinedTerm
142 sg:journal.1094644 schema:issn 0724-8741
143 1573-904X
144 schema:name Pharmaceutical Research
145 schema:publisher Springer Nature
146 rdf:type schema:Periodical
147 sg:person.01002066104.07 schema:affiliation grid-institutes:grid.413561.4
148 schema:familyName Johnson
149 schema:givenName Robert D.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002066104.07
151 rdf:type schema:Person
152 sg:person.0751630752.16 schema:affiliation grid-institutes:grid.413561.4
153 schema:familyName Hussain
154 schema:givenName Ajaz S.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751630752.16
156 rdf:type schema:Person
157 sg:pub.10.1007/bf02459570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026163953
158 https://doi.org/10.1007/bf02459570
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/bf02478259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028715170
161 https://doi.org/10.1007/bf02478259
162 rdf:type schema:CreativeWork
163 sg:pub.10.1023/a:1015911721455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031324395
164 https://doi.org/10.1023/a:1015911721455
165 rdf:type schema:CreativeWork
166 sg:pub.10.1023/a:1015972007342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013490742
167 https://doi.org/10.1023/a:1015972007342
168 rdf:type schema:CreativeWork
169 grid-institutes:grid.413561.4 schema:alternateName The Division of Pharmaceutics and Drug Delivery Systems, College of Pharmacy, University of Cincinnati-Medical Center, 45267-0004, Cincinnati, Ohio
170 schema:name The Division of Pharmaceutics and Drug Delivery Systems, College of Pharmacy, University of Cincinnati-Medical Center, 45267-0004, Cincinnati, Ohio
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...