Related, but not Relevant: Content-Based Collaborative Filtering in TREC-8 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-04

AUTHORS

Ian M. Soboroff, Charles K. Nicholas

ABSTRACT

Historically, solutions to the TREC filtering tasks have focused exclusively on the content of documents and search topic descriptions as training data. These approaches are well-known for their ability to focus on those salient concepts in the document stream which are most useful for separating relevant documents from irrelevant ones. However, one kind of information that has not been used is the relationships among the topics themselves. In our TREC-8 routing experiments, we employed a collaborative (or social) filtering algorithm, based on latent semantic indexing which highlights common term usage patterns among groups of filtering profiles. Our hypothesis was that this would allow related topics to share common relevant documents. We found, however, that the algorithm also recommends many documents of related, yet irrelevant interest. As a result of this process, many similar search topics are “linked” together by common sets of documents recommended to them. We visualize these topic relationships using graphs where topics are nodes and edges exist where two topics share a recommended document. More... »

PAGES

189-208

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1015797928606

DOI

http://dx.doi.org/10.1023/a:1015797928606

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035706561


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soboroff", 
        "givenName": "Ian M.", 
        "id": "sg:person.014401617547.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014401617547.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nicholas", 
        "givenName": "Charles K.", 
        "id": "sg:person.010706654102.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010706654102.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/138859.138867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005134077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012153938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/215206.215365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016812897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/22899.22903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020520060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/223904.223931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021678987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-2099-5_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026963381", 
          "https://doi.org/10.1007/978-1-4471-2099-5_29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/312624.312652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027520812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/291128.291131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028464808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/258525.258530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031139685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/324133.324140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041136418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/312624.312649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044685375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/245108.245126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046143966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/169059.169365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046161003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/192844.192905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051044947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1037127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062863938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827597329266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062884588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/109434209200600103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090722976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/109434209200600103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090722976"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-04", 
    "datePublishedReg": "2002-04-01", 
    "description": "Historically, solutions to the TREC filtering tasks have focused exclusively on the content of documents and search topic descriptions as training data. These approaches are well-known for their ability to focus on those salient concepts in the document stream which are most useful for separating relevant documents from irrelevant ones. However, one kind of information that has not been used is the relationships among the topics themselves. In our TREC-8 routing experiments, we employed a collaborative (or social) filtering algorithm, based on latent semantic indexing which highlights common term usage patterns among groups of filtering profiles. Our hypothesis was that this would allow related topics to share common relevant documents. We found, however, that the algorithm also recommends many documents of related, yet irrelevant interest. As a result of this process, many similar search topics are \u201clinked\u201d together by common sets of documents recommended to them. We visualize these topic relationships using graphs where topics are nodes and edges exist where two topics share a recommended document.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1015797928606", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1023664", 
        "issn": [
          "1386-4564", 
          "1573-7659"
        ], 
        "name": "Information Retrieval Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "Related, but not Relevant: Content-Based Collaborative Filtering in TREC-8", 
    "pagination": "189-208", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aa17ebf40852de7bbf7171240ad52053b2f197c4a8ba30b808511a2bcbf3c4e9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1015797928606"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035706561"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1015797928606", 
      "https://app.dimensions.ai/details/publication/pub.1035706561"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1015797928606"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1015797928606'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1015797928606'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1015797928606'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1015797928606'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1015797928606 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N327726a499c84f578dedab5e3ae0e7c9
4 schema:citation sg:pub.10.1007/978-1-4471-2099-5_29
5 https://doi.org/10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9
6 https://doi.org/10.1137/1037127
7 https://doi.org/10.1137/s1064827597329266
8 https://doi.org/10.1145/138859.138867
9 https://doi.org/10.1145/169059.169365
10 https://doi.org/10.1145/192844.192905
11 https://doi.org/10.1145/215206.215365
12 https://doi.org/10.1145/223904.223931
13 https://doi.org/10.1145/22899.22903
14 https://doi.org/10.1145/245108.245126
15 https://doi.org/10.1145/258525.258530
16 https://doi.org/10.1145/291128.291131
17 https://doi.org/10.1145/312624.312649
18 https://doi.org/10.1145/312624.312652
19 https://doi.org/10.1145/324133.324140
20 https://doi.org/10.1177/109434209200600103
21 schema:datePublished 2002-04
22 schema:datePublishedReg 2002-04-01
23 schema:description Historically, solutions to the TREC filtering tasks have focused exclusively on the content of documents and search topic descriptions as training data. These approaches are well-known for their ability to focus on those salient concepts in the document stream which are most useful for separating relevant documents from irrelevant ones. However, one kind of information that has not been used is the relationships among the topics themselves. In our TREC-8 routing experiments, we employed a collaborative (or social) filtering algorithm, based on latent semantic indexing which highlights common term usage patterns among groups of filtering profiles. Our hypothesis was that this would allow related topics to share common relevant documents. We found, however, that the algorithm also recommends many documents of related, yet irrelevant interest. As a result of this process, many similar search topics are “linked” together by common sets of documents recommended to them. We visualize these topic relationships using graphs where topics are nodes and edges exist where two topics share a recommended document.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N4d831c4f50a84972b738c938c3b12c50
28 N7d45831e97754dd599a5fcb762ce6708
29 sg:journal.1023664
30 schema:name Related, but not Relevant: Content-Based Collaborative Filtering in TREC-8
31 schema:pagination 189-208
32 schema:productId N179a5e6e85c64517a6200809a00cb323
33 Na0175c9594ff4784bbd97195449c811b
34 Nb40c78465cfc46efa4453a59f864a81a
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035706561
36 https://doi.org/10.1023/a:1015797928606
37 schema:sdDatePublished 2019-04-11T01:12
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N1f6f6bb9d1724d298bdf735681b6ee60
40 schema:url http://link.springer.com/10.1023%2FA%3A1015797928606
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N08ec0db5fd774279871e1c8a12c41411 schema:name Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County
45 rdf:type schema:Organization
46 N179a5e6e85c64517a6200809a00cb323 schema:name dimensions_id
47 schema:value pub.1035706561
48 rdf:type schema:PropertyValue
49 N1f6f6bb9d1724d298bdf735681b6ee60 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N23f5712bd9a144e19b29d0ddaada97c3 rdf:first sg:person.010706654102.69
52 rdf:rest rdf:nil
53 N327726a499c84f578dedab5e3ae0e7c9 rdf:first sg:person.014401617547.41
54 rdf:rest N23f5712bd9a144e19b29d0ddaada97c3
55 N4d831c4f50a84972b738c938c3b12c50 schema:issueNumber 2-3
56 rdf:type schema:PublicationIssue
57 N6d17db829527416a986ba51dc12e1539 schema:name Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County
58 rdf:type schema:Organization
59 N7d45831e97754dd599a5fcb762ce6708 schema:volumeNumber 5
60 rdf:type schema:PublicationVolume
61 Na0175c9594ff4784bbd97195449c811b schema:name doi
62 schema:value 10.1023/a:1015797928606
63 rdf:type schema:PropertyValue
64 Nb40c78465cfc46efa4453a59f864a81a schema:name readcube_id
65 schema:value aa17ebf40852de7bbf7171240ad52053b2f197c4a8ba30b808511a2bcbf3c4e9
66 rdf:type schema:PropertyValue
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information Systems
72 rdf:type schema:DefinedTerm
73 sg:journal.1023664 schema:issn 1386-4564
74 1573-7659
75 schema:name Information Retrieval Journal
76 rdf:type schema:Periodical
77 sg:person.010706654102.69 schema:affiliation N6d17db829527416a986ba51dc12e1539
78 schema:familyName Nicholas
79 schema:givenName Charles K.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010706654102.69
81 rdf:type schema:Person
82 sg:person.014401617547.41 schema:affiliation N08ec0db5fd774279871e1c8a12c41411
83 schema:familyName Soboroff
84 schema:givenName Ian M.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014401617547.41
86 rdf:type schema:Person
87 sg:pub.10.1007/978-1-4471-2099-5_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026963381
88 https://doi.org/10.1007/978-1-4471-2099-5_29
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012153938
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1137/1037127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062863938
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1137/s1064827597329266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062884588
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1145/138859.138867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005134077
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1145/169059.169365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046161003
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1145/192844.192905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051044947
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1145/215206.215365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016812897
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1145/223904.223931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021678987
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1145/22899.22903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020520060
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1145/245108.245126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046143966
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1145/258525.258530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031139685
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1145/291128.291131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028464808
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1145/312624.312649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044685375
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1145/312624.312652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027520812
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1145/324133.324140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041136418
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1177/109434209200600103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090722976
121 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...