A Graph Theoretic Approach to Strong Monotonicity with respect to Polyhedral Cones View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-06

AUTHORS

H. Kunze, D. Siegel

ABSTRACT

Consider the flow ϕt for the system of differential equations , xεΩ, Ω⊂n, Ω open. Let K(t) be an expanding polyhedral cone of constant dimension, k be a unit vector in K(0), and x0εΩ. A sufficient condition for εK(t) for t≥0 is that there exists an l so that Df(ϕt(x0))+lI leaves K(t) invariant for all t≥0. If in addition (Df(ϕt(x0))+lI)n-1 takes k into the relative interior of K(t) for all t>0 then is in the relative interior of K(t) for all t>0. The latter condition for strong monotonicity may be cumbersome to check; a graph theoretic condition which can replace it is presented in this paper. Knowledge of the facial structure of K(t) is required. The results contained in this paper are extensions of the Kamke-Müller theorem and Hirsch's theorem for strong monotone flows. Applications from chemical kinetics and epidemiology are considered. More... »

PAGES

95-113

Journal

TITLE

Positivity

ISSUE

2

VOLUME

6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1015290601993

DOI

http://dx.doi.org/10.1023/a:1015290601993

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016589262


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Guelph", 
          "id": "https://www.grid.ac/institutes/grid.34429.38", 
          "name": [
            "Department of Mathematics and Statistics, University of Guelph, N1G 2W1, Guelph, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kunze", 
        "givenName": "H.", 
        "id": "sg:person.010605417143.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010605417143.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Applied Mathematics, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siegel", 
        "givenName": "D.", 
        "id": "sg:person.01242363771.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242363771.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00036810108840906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000274715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03081089208818118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006089120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(81)90180-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007346098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmaa.1994.1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019486860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0362-546x(98)00094-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033635012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(73)90038-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035159166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-1984-15236-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041882173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0116101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062838453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0516030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062847696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1030003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062862632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1216/rmjm/1181073068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064431460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/017/706104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089211625"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-06", 
    "datePublishedReg": "2002-06-01", 
    "description": "Consider the flow \u03d5t for the system of differential equations , x\u03b5\u03a9, \u03a9\u2282n, \u03a9 open. Let K(t) be an expanding polyhedral cone of constant dimension, k be a unit vector in K(0), and x0\u03b5\u03a9. A sufficient condition for \u03b5K(t) for t\u22650 is that there exists an l so that Df(\u03d5t(x0))+lI leaves K(t) invariant for all t\u22650. If in addition (Df(\u03d5t(x0))+lI)n-1 takes k into the relative interior of K(t) for all t>0 then is in the relative interior of K(t) for all t>0. The latter condition for strong monotonicity may be cumbersome to check; a graph theoretic condition which can replace it is presented in this paper. Knowledge of the facial structure of K(t) is required. The results contained in this paper are extensions of the Kamke-M\u00fcller theorem and Hirsch's theorem for strong monotone flows. Applications from chemical kinetics and epidemiology are considered.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1015290601993", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134502", 
        "issn": [
          "1385-1292", 
          "1572-9281"
        ], 
        "name": "Positivity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "A Graph Theoretic Approach to Strong Monotonicity with respect to Polyhedral Cones", 
    "pagination": "95-113", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4f0aff0811013a4cc6238a69ae5b6d04157a6b4ebdf7bca6a7eae0f9a8158a14"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1015290601993"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016589262"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1015290601993", 
      "https://app.dimensions.ai/details/publication/pub.1016589262"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1015290601993"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1015290601993'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1015290601993'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1015290601993'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1015290601993'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1015290601993 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N418d1725e32c4997b12579107de0b131
4 schema:citation https://doi.org/10.1006/jmaa.1994.1233
5 https://doi.org/10.1016/0024-3795(73)90038-4
6 https://doi.org/10.1016/0024-3795(81)90180-4
7 https://doi.org/10.1016/s0362-546x(98)00094-7
8 https://doi.org/10.1080/00036810108840906
9 https://doi.org/10.1080/03081089208818118
10 https://doi.org/10.1090/conm/017/706104
11 https://doi.org/10.1090/s0273-0979-1984-15236-4
12 https://doi.org/10.1137/0116101
13 https://doi.org/10.1137/0516030
14 https://doi.org/10.1137/1030003
15 https://doi.org/10.1216/rmjm/1181073068
16 schema:datePublished 2002-06
17 schema:datePublishedReg 2002-06-01
18 schema:description Consider the flow ϕt for the system of differential equations , xεΩ, Ω⊂n, Ω open. Let K(t) be an expanding polyhedral cone of constant dimension, k be a unit vector in K(0), and x0εΩ. A sufficient condition for εK(t) for t≥0 is that there exists an l so that Df(ϕt(x0))+lI leaves K(t) invariant for all t≥0. If in addition (Df(ϕt(x0))+lI)n-1 takes k into the relative interior of K(t) for all t>0 then is in the relative interior of K(t) for all t>0. The latter condition for strong monotonicity may be cumbersome to check; a graph theoretic condition which can replace it is presented in this paper. Knowledge of the facial structure of K(t) is required. The results contained in this paper are extensions of the Kamke-Müller theorem and Hirsch's theorem for strong monotone flows. Applications from chemical kinetics and epidemiology are considered.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N36ff81da297e42e18a7168ce11c04340
23 Nda594ba4be53494999ce4db3f3212eb4
24 sg:journal.1134502
25 schema:name A Graph Theoretic Approach to Strong Monotonicity with respect to Polyhedral Cones
26 schema:pagination 95-113
27 schema:productId N0603ab0134b544b0b68aebeb3c8af508
28 N37ce08e04eab48c590f47fc83c269367
29 Nd7196be73bc9458388f614a735c5fb0a
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016589262
31 https://doi.org/10.1023/a:1015290601993
32 schema:sdDatePublished 2019-04-10T15:49
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N3ba8c1e0958c4deaae30b429c61bd886
35 schema:url http://link.springer.com/10.1023/A:1015290601993
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N0603ab0134b544b0b68aebeb3c8af508 schema:name dimensions_id
40 schema:value pub.1016589262
41 rdf:type schema:PropertyValue
42 N36ff81da297e42e18a7168ce11c04340 schema:volumeNumber 6
43 rdf:type schema:PublicationVolume
44 N37ce08e04eab48c590f47fc83c269367 schema:name readcube_id
45 schema:value 4f0aff0811013a4cc6238a69ae5b6d04157a6b4ebdf7bca6a7eae0f9a8158a14
46 rdf:type schema:PropertyValue
47 N3ba8c1e0958c4deaae30b429c61bd886 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N418d1725e32c4997b12579107de0b131 rdf:first sg:person.010605417143.40
50 rdf:rest N96ede7d945d14babb9910dcbacac0765
51 N96ede7d945d14babb9910dcbacac0765 rdf:first sg:person.01242363771.96
52 rdf:rest rdf:nil
53 Nd7196be73bc9458388f614a735c5fb0a schema:name doi
54 schema:value 10.1023/a:1015290601993
55 rdf:type schema:PropertyValue
56 Nda594ba4be53494999ce4db3f3212eb4 schema:issueNumber 2
57 rdf:type schema:PublicationIssue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1134502 schema:issn 1385-1292
65 1572-9281
66 schema:name Positivity
67 rdf:type schema:Periodical
68 sg:person.010605417143.40 schema:affiliation https://www.grid.ac/institutes/grid.34429.38
69 schema:familyName Kunze
70 schema:givenName H.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010605417143.40
72 rdf:type schema:Person
73 sg:person.01242363771.96 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
74 schema:familyName Siegel
75 schema:givenName D.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242363771.96
77 rdf:type schema:Person
78 https://doi.org/10.1006/jmaa.1994.1233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019486860
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/0024-3795(73)90038-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035159166
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/0024-3795(81)90180-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007346098
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/s0362-546x(98)00094-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033635012
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1080/00036810108840906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000274715
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1080/03081089208818118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006089120
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1090/conm/017/706104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089211625
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1090/s0273-0979-1984-15236-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041882173
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1137/0116101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062838453
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1137/0516030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062847696
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1137/1030003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062862632
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1216/rmjm/1181073068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064431460
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.34429.38 schema:alternateName University of Guelph
103 schema:name Department of Mathematics and Statistics, University of Guelph, N1G 2W1, Guelph, Ontario, Canada
104 rdf:type schema:Organization
105 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
106 schema:name Department of Applied Mathematics, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...