Diophantine Equations and Bernoulli Polynomials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-04

AUTHORS

Yu. F. Bilu, B. Brindza, P. Kirschenhofer, Á. Pintér, R. F. Tichy, A. Schinzel

ABSTRACT

Given m, n ≥ 2, we prove that, for sufficiently large y, the sum 1n +···+ yn is not a product of m consecutive integers. We also prove that for m ≠ n we have 1m +···+ xm ≠ 1n +···+ yn, provided x, y are sufficiently large. Among other auxiliary facts, we show that Bernoulli polynomials of odd index are indecomposable, and those of even index are ‘almost’ indecomposable, a result of independent interest. More... »

PAGES

173-188

References to SciGraph publications

  • 1987-12. Erratum to: On the diophantine equation 1k+2k+...+xk+R(x)=yz in ACTA MATHEMATICA
  • 1997. Some Methods of Erdôs Applied to Finite Arithmetic Progressions in THE MATHEMATICS OF PAUL ERDÖS I
  • 1973. Topics in Analytic Number Theory in NONE
  • 2000-06. Octahedrons with Equally Many Lattice Points in PERIODICA MATHEMATICA HUNGARICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1014972217217

    DOI

    http://dx.doi.org/10.1023/a:1014972217217

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006077877


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Bordeaux", 
              "id": "https://www.grid.ac/institutes/grid.412041.2", 
              "name": [
                "A2X, Universit\u00e9 Bordeaux 1, 351 cours de la Lib\u00e9ration, 33405, Talence cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bilu", 
            "givenName": "Yu. F.", 
            "id": "sg:person.07673363033.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07673363033.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Debrecen", 
              "id": "https://www.grid.ac/institutes/grid.7122.6", 
              "name": [
                "Department of Mathematics, PO Box 12, H-4010, Debrecen", 
                "University of Debrecen, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brindza", 
            "givenName": "B.", 
            "id": "sg:person.012654471743.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012654471743.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Leoben", 
              "id": "https://www.grid.ac/institutes/grid.181790.6", 
              "name": [
                "Montanuniversit\u00e4t Leoben, Franz Josef-Str. 18, 8700, Leoben, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kirschenhofer", 
            "givenName": "P.", 
            "id": "sg:person.014144322056.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014144322056.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Debrecen", 
              "id": "https://www.grid.ac/institutes/grid.7122.6", 
              "name": [
                "Department of Mathematics, PO Box 12, H-4010, Debrecen", 
                "University of Debrecen, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pint\u00e9r", 
            "givenName": "\u00c1.", 
            "id": "sg:person.0643540737.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643540737.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Leoben", 
              "id": "https://www.grid.ac/institutes/grid.181790.6", 
              "name": [
                "Montanuniversit\u00e4t Leoben, Franz Josef-Str. 18, 8700, Leoben, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tichy", 
            "givenName": "R. F.", 
            "id": "sg:person.015312676677.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Polish Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.413454.3", 
              "name": [
                "Mathematical Institute PAN, PO Box 137, 00-950, Warszawa, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schinzel", 
            "givenName": "A.", 
            "id": "sg:person.011223661245.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011223661245.99"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1010399929053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004466615", 
              "https://doi.org/10.1023/a:1010399929053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02392557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008183784", 
              "https://doi.org/10.1007/bf02392557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/crll.1969.234.45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037102476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-60408-9_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042631094", 
              "https://doi.org/10.1007/978-3-642-60408-9_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-60408-9_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042631094", 
              "https://doi.org/10.1007/978-3-642-60408-9_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-80615-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049342383", 
              "https://doi.org/10.1007/978-3-642-80615-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-80615-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049342383", 
              "https://doi.org/10.1007/978-3-642-80615-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/crll.1973.264.40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053412179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0305004100045904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053812906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0305004100073047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053859409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0305004100044418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053910753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/qjmath/52.2.161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059986099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/qmath/12.1.304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059987100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3836/tjm/1270132273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071448746"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9783110285581.11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086762149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/aa-37-1-233-240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092011845"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/aa-44-2-99-107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092021389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/aa-77-1-97-101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092041148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/aa-82-3-303-307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092041287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/aa-95-3-261-288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101092755"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-04", 
        "datePublishedReg": "2002-04-01", 
        "description": "Given m, n \u2265 2, we prove that, for sufficiently large y, the sum 1n +\u00b7\u00b7\u00b7+ yn is not a product of m consecutive integers. We also prove that for m \u2260 n we have 1m +\u00b7\u00b7\u00b7+ xm \u2260 1n +\u00b7\u00b7\u00b7+ yn, provided x, y are sufficiently large. Among other auxiliary facts, we show that Bernoulli polynomials of odd index are indecomposable, and those of even index are \u2018almost\u2019 indecomposable, a result of independent interest.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1014972217217", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1138208", 
            "issn": [
              "0010-437X", 
              "1570-5846"
            ], 
            "name": "Compositio Mathematica", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "131"
          }
        ], 
        "name": "Diophantine Equations and Bernoulli Polynomials", 
        "pagination": "173-188", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1cf3c01df74adae33927200319f8ac360120e896de20fe0c65325b223612f665"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1014972217217"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006077877"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1014972217217", 
          "https://app.dimensions.ai/details/publication/pub.1006077877"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000503.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023/A:1014972217217"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1014972217217'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1014972217217'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1014972217217'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1014972217217'


     

    This table displays all metadata directly associated to this object as RDF triples.

    164 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1014972217217 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nc67bdbcdc597459ca37e606e3ede5cab
    4 schema:citation sg:pub.10.1007/978-3-642-60408-9_20
    5 sg:pub.10.1007/978-3-642-80615-5
    6 sg:pub.10.1007/bf02392557
    7 sg:pub.10.1023/a:1010399929053
    8 https://doi.org/10.1017/s0305004100044418
    9 https://doi.org/10.1017/s0305004100045904
    10 https://doi.org/10.1017/s0305004100073047
    11 https://doi.org/10.1093/qjmath/52.2.161
    12 https://doi.org/10.1093/qmath/12.1.304
    13 https://doi.org/10.1515/9783110285581.11
    14 https://doi.org/10.1515/crll.1969.234.45
    15 https://doi.org/10.1515/crll.1973.264.40
    16 https://doi.org/10.3836/tjm/1270132273
    17 https://doi.org/10.4064/aa-37-1-233-240
    18 https://doi.org/10.4064/aa-44-2-99-107
    19 https://doi.org/10.4064/aa-77-1-97-101
    20 https://doi.org/10.4064/aa-82-3-303-307
    21 https://doi.org/10.4064/aa-95-3-261-288
    22 schema:datePublished 2002-04
    23 schema:datePublishedReg 2002-04-01
    24 schema:description Given m, n ≥ 2, we prove that, for sufficiently large y, the sum 1n +···+ yn is not a product of m consecutive integers. We also prove that for m ≠ n we have 1m +···+ xm ≠ 1n +···+ yn, provided x, y are sufficiently large. Among other auxiliary facts, we show that Bernoulli polynomials of odd index are indecomposable, and those of even index are ‘almost’ indecomposable, a result of independent interest.
    25 schema:genre research_article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree true
    28 schema:isPartOf Nc15f34ae0a1c40cfaae68437515d3be0
    29 Nf6e429290d684a02898ffcbe4947a61b
    30 sg:journal.1138208
    31 schema:name Diophantine Equations and Bernoulli Polynomials
    32 schema:pagination 173-188
    33 schema:productId N765e3860d3ff452fab2000cd24ecfe04
    34 Nb9551bcc1ee64c89b2de79f0e416d88a
    35 Nfe63f0d3abad429489e41d08c26ab4c4
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006077877
    37 https://doi.org/10.1023/a:1014972217217
    38 schema:sdDatePublished 2019-04-10T14:58
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher N2f5b27e990994e998264e24a5bb43a35
    41 schema:url http://link.springer.com/10.1023/A:1014972217217
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset articles
    44 rdf:type schema:ScholarlyArticle
    45 N2f5b27e990994e998264e24a5bb43a35 schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 N3326433320814d45aaccbb19074b3710 rdf:first sg:person.011223661245.99
    48 rdf:rest rdf:nil
    49 N765e3860d3ff452fab2000cd24ecfe04 schema:name dimensions_id
    50 schema:value pub.1006077877
    51 rdf:type schema:PropertyValue
    52 N89785f4db6c7407b835b086e1875cc17 rdf:first sg:person.012654471743.63
    53 rdf:rest Ne16c9f437a0744d09750c1ac8cb85cc3
    54 N8c58edf6cc4e4f69bf28e310d9571e20 rdf:first sg:person.0643540737.17
    55 rdf:rest N9b7bc29f954a4fea94f8339c9f6611ba
    56 N9b7bc29f954a4fea94f8339c9f6611ba rdf:first sg:person.015312676677.43
    57 rdf:rest N3326433320814d45aaccbb19074b3710
    58 Nb9551bcc1ee64c89b2de79f0e416d88a schema:name doi
    59 schema:value 10.1023/a:1014972217217
    60 rdf:type schema:PropertyValue
    61 Nc15f34ae0a1c40cfaae68437515d3be0 schema:volumeNumber 131
    62 rdf:type schema:PublicationVolume
    63 Nc67bdbcdc597459ca37e606e3ede5cab rdf:first sg:person.07673363033.34
    64 rdf:rest N89785f4db6c7407b835b086e1875cc17
    65 Ne16c9f437a0744d09750c1ac8cb85cc3 rdf:first sg:person.014144322056.01
    66 rdf:rest N8c58edf6cc4e4f69bf28e310d9571e20
    67 Nf6e429290d684a02898ffcbe4947a61b schema:issueNumber 2
    68 rdf:type schema:PublicationIssue
    69 Nfe63f0d3abad429489e41d08c26ab4c4 schema:name readcube_id
    70 schema:value 1cf3c01df74adae33927200319f8ac360120e896de20fe0c65325b223612f665
    71 rdf:type schema:PropertyValue
    72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Information and Computing Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Artificial Intelligence and Image Processing
    77 rdf:type schema:DefinedTerm
    78 sg:journal.1138208 schema:issn 0010-437X
    79 1570-5846
    80 schema:name Compositio Mathematica
    81 rdf:type schema:Periodical
    82 sg:person.011223661245.99 schema:affiliation https://www.grid.ac/institutes/grid.413454.3
    83 schema:familyName Schinzel
    84 schema:givenName A.
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011223661245.99
    86 rdf:type schema:Person
    87 sg:person.012654471743.63 schema:affiliation https://www.grid.ac/institutes/grid.7122.6
    88 schema:familyName Brindza
    89 schema:givenName B.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012654471743.63
    91 rdf:type schema:Person
    92 sg:person.014144322056.01 schema:affiliation https://www.grid.ac/institutes/grid.181790.6
    93 schema:familyName Kirschenhofer
    94 schema:givenName P.
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014144322056.01
    96 rdf:type schema:Person
    97 sg:person.015312676677.43 schema:affiliation https://www.grid.ac/institutes/grid.181790.6
    98 schema:familyName Tichy
    99 schema:givenName R. F.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43
    101 rdf:type schema:Person
    102 sg:person.0643540737.17 schema:affiliation https://www.grid.ac/institutes/grid.7122.6
    103 schema:familyName Pintér
    104 schema:givenName Á.
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643540737.17
    106 rdf:type schema:Person
    107 sg:person.07673363033.34 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
    108 schema:familyName Bilu
    109 schema:givenName Yu. F.
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07673363033.34
    111 rdf:type schema:Person
    112 sg:pub.10.1007/978-3-642-60408-9_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042631094
    113 https://doi.org/10.1007/978-3-642-60408-9_20
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/978-3-642-80615-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049342383
    116 https://doi.org/10.1007/978-3-642-80615-5
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/bf02392557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008183784
    119 https://doi.org/10.1007/bf02392557
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1023/a:1010399929053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004466615
    122 https://doi.org/10.1023/a:1010399929053
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1017/s0305004100044418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053910753
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1017/s0305004100045904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053812906
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1017/s0305004100073047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053859409
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1093/qjmath/52.2.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059986099
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1093/qmath/12.1.304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059987100
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1515/9783110285581.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086762149
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1515/crll.1969.234.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037102476
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1515/crll.1973.264.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053412179
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.3836/tjm/1270132273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071448746
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.4064/aa-37-1-233-240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092011845
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.4064/aa-44-2-99-107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092021389
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.4064/aa-77-1-97-101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092041148
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.4064/aa-82-3-303-307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092041287
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.4064/aa-95-3-261-288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101092755
    151 rdf:type schema:CreativeWork
    152 https://www.grid.ac/institutes/grid.181790.6 schema:alternateName University of Leoben
    153 schema:name Montanuniversität Leoben, Franz Josef-Str. 18, 8700, Leoben, Austria
    154 rdf:type schema:Organization
    155 https://www.grid.ac/institutes/grid.412041.2 schema:alternateName University of Bordeaux
    156 schema:name A2X, Université Bordeaux 1, 351 cours de la Libération, 33405, Talence cedex, France
    157 rdf:type schema:Organization
    158 https://www.grid.ac/institutes/grid.413454.3 schema:alternateName Polish Academy of Sciences
    159 schema:name Mathematical Institute PAN, PO Box 137, 00-950, Warszawa, Poland
    160 rdf:type schema:Organization
    161 https://www.grid.ac/institutes/grid.7122.6 schema:alternateName University of Debrecen
    162 schema:name Department of Mathematics, PO Box 12, H-4010, Debrecen
    163 University of Debrecen, Hungary
    164 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...