Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-03

AUTHORS

N. N. Ganikhodzhaev

ABSTRACT

The exact solution is found for the problem of phase transitions in the Ising model with competing ternary and binary interactions. For the pair of parameters θ=θ(J) and θ1=θ1(J1) in the plane (θ1,θ), we find two critical curves such that a phase transition occurs for all pairs (θ1,θ) lying between the curves. More... »

PAGES

419-424

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1014771023960

DOI

http://dx.doi.org/10.1023/a:1014771023960

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004815593


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Uzbekistan National University, Tashkent, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.23471.33", 
          "name": [
            "Uzbekistan National University, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ganikhodzhaev", 
        "givenName": "N. N.", 
        "id": "sg:person.013657677461.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657677461.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01049014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011078957", 
          "https://doi.org/10.1007/bf01049014"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-03", 
    "datePublishedReg": "2002-03-01", 
    "description": "The exact solution is found for the problem of phase transitions in the Ising model with competing ternary and binary interactions. For the pair of parameters \u03b8=\u03b8(J) and \u03b81=\u03b81(J1) in the plane (\u03b81,\u03b8), we find two critical curves such that a phase transition occurs for all pairs (\u03b81,\u03b8) lying between the curves.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1014771023960", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "2305-3135"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "130"
      }
    ], 
    "keywords": [
      "binary interactions", 
      "trees", 
      "interaction", 
      "pairs", 
      "transition", 
      "model", 
      "exact solution", 
      "phase transition", 
      "solution", 
      "ternary", 
      "plane", 
      "critical curve", 
      "curves", 
      "Cayley tree", 
      "problem", 
      "parameter \u03b8", 
      "\u03b81", 
      "Ising model"
    ], 
    "name": "Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions", 
    "pagination": "419-424", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004815593"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1014771023960"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1014771023960", 
      "https://app.dimensions.ai/details/publication/pub.1004815593"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_355.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1014771023960"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1014771023960'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1014771023960'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1014771023960'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1014771023960'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      22 PREDICATES      45 URIs      36 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1014771023960 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author Nea80052106734988b6d2898702f304b6
4 schema:citation sg:pub.10.1007/bf01049014
5 schema:datePublished 2002-03
6 schema:datePublishedReg 2002-03-01
7 schema:description The exact solution is found for the problem of phase transitions in the Ising model with competing ternary and binary interactions. For the pair of parameters θ=θ(J) and θ1=θ1(J1) in the plane (θ1,θ), we find two critical curves such that a phase transition occurs for all pairs (θ1,θ) lying between the curves.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N564dc438a6284ddc9c1cfd1c91ef27a0
12 Nfe03e8c5fb7141ff966843484103c22f
13 sg:journal.1327888
14 schema:keywords Cayley tree
15 Ising model
16 binary interactions
17 critical curve
18 curves
19 exact solution
20 interaction
21 model
22 pairs
23 parameter θ
24 phase transition
25 plane
26 problem
27 solution
28 ternary
29 transition
30 trees
31 θ1
32 schema:name Exact Solution of the Ising Model on the Cayley Tree with Competing Ternary and Binary Interactions
33 schema:pagination 419-424
34 schema:productId N0de5989e778d4482b0e95bcb64485d3d
35 N19cb95ca4ffc4cad9d1ffc5302609a18
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004815593
37 https://doi.org/10.1023/a:1014771023960
38 schema:sdDatePublished 2022-01-01T18:12
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N25a504d3e3d34bee8995da53dcca635a
41 schema:url https://doi.org/10.1023/a:1014771023960
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N0de5989e778d4482b0e95bcb64485d3d schema:name dimensions_id
46 schema:value pub.1004815593
47 rdf:type schema:PropertyValue
48 N19cb95ca4ffc4cad9d1ffc5302609a18 schema:name doi
49 schema:value 10.1023/a:1014771023960
50 rdf:type schema:PropertyValue
51 N25a504d3e3d34bee8995da53dcca635a schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N564dc438a6284ddc9c1cfd1c91ef27a0 schema:volumeNumber 130
54 rdf:type schema:PublicationVolume
55 Nea80052106734988b6d2898702f304b6 rdf:first sg:person.013657677461.14
56 rdf:rest rdf:nil
57 Nfe03e8c5fb7141ff966843484103c22f schema:issueNumber 3
58 rdf:type schema:PublicationIssue
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
63 schema:name Physical Sciences
64 rdf:type schema:DefinedTerm
65 sg:journal.1327888 schema:issn 0040-5779
66 2305-3135
67 schema:name Theoretical and Mathematical Physics
68 schema:publisher Springer Nature
69 rdf:type schema:Periodical
70 sg:person.013657677461.14 schema:affiliation grid-institutes:grid.23471.33
71 schema:familyName Ganikhodzhaev
72 schema:givenName N. N.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657677461.14
74 rdf:type schema:Person
75 sg:pub.10.1007/bf01049014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011078957
76 https://doi.org/10.1007/bf01049014
77 rdf:type schema:CreativeWork
78 grid-institutes:grid.23471.33 schema:alternateName Uzbekistan National University, Tashkent, Uzbekistan
79 schema:name Uzbekistan National University, Tashkent, Uzbekistan
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...