Invasion Genetics of New World Medflies: Testing Alternative Colonization Scenarios View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-06

AUTHORS

Andrew J. Bohonak, Neil Davies, Francis X. Villablanca, George K. Roderick

ABSTRACT

The Mediterranean fruit fly (Ceratitis capitata) is an invasive agricultural pest with a wide host range and a nearly global distribution. Efforts to forgo the medfly's spread into the United States are dependent on an understanding of population dynamics in newly established populations elsewhere. To explore the potential influence of demographic and historical parameters in six medfly populations distributed from Mexico to Peru, we created population genetic null models using Monte Carlo simulations. Null expectations for genetic differentiation (FST) were compared with actual sequence variation from four highly polymorphic nuclear loci. Four colonization scenarios that were modeled led to unique genetic signatures that could be used to interpret empirical data. Unless current gene flow across Latin America was assumed to be very high, we could reject colonizations consisting of multiple introductions, each of low genetic diversity. Further, if simulated populations were small (Ne = 5 × 102 individuals per population), small invasions from a single source consistently produced FST values comparable to those currently observed in Latin America. In contrast, only large invasions from diverse sources were compatible with the observed data for large populations (Ne ≥ 5 × 103). This study demonstrates that alternative population genetic hypotheses can be tested empirically even when departures from equilibrium are extreme, and that population genetic theory can be used to explore the processes that underlie biological invasions. More... »

PAGES

103-111

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1014559617282

DOI

http://dx.doi.org/10.1023/a:1014559617282

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024363686


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biology, San Diego State University, 92182-4614, San Diego, CA, USA; Author for correspondence (e-mail", 
          "id": "http://www.grid.ac/institutes/grid.263081.e", 
          "name": [
            "Department of Biology, San Diego State University, 92182-4614, San Diego, CA, USA; Author for correspondence (e-mail"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bohonak", 
        "givenName": "Andrew J.", 
        "id": "sg:person.01357255340.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357255340.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gump Research Station, University of California, 101 Giannini Hall #3100, 94720-3100, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Gump Research Station, University of California, 101 Giannini Hall #3100, 94720-3100, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davies", 
        "givenName": "Neil", 
        "id": "sg:person.01137600007.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137600007.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biological Science Department, California Polytechnic State University, 93407, San Luis Obispo, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.253547.2", 
          "name": [
            "Biological Science Department, California Polytechnic State University, 93407, San Luis Obispo, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Villablanca", 
        "givenName": "Francis X.", 
        "id": "sg:person.01307413640.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307413640.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Insect Biology, Department of Environmental Science, Policy and Management, University of California, 201 Wellman Hall #3112, 94720-3, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Division of Insect Biology, Department of Environmental Science, Policy and Management, University of California, 201 Wellman Hall #3112, 94720-3, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roderick", 
        "givenName": "George K.", 
        "id": "sg:person.01077676271.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077676271.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/hdy.1992.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005557730", 
          "https://doi.org/10.1038/hdy.1992.102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010090414598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013844124", 
          "https://doi.org/10.1023/a:1010090414598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1991.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032738010", 
          "https://doi.org/10.1038/hdy.1991.98"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1995.60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049476151", 
          "https://doi.org/10.1038/hdy.1995.60"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-06", 
    "datePublishedReg": "2001-06-01", 
    "description": "The Mediterranean fruit fly (Ceratitis capitata) is an invasive agricultural pest with a wide host range and a nearly global distribution. Efforts to forgo the medfly's spread into the United States are dependent on an understanding of population dynamics in newly established populations elsewhere. To explore the potential influence of demographic and historical parameters in six medfly populations distributed from Mexico to Peru, we created population genetic null models using Monte Carlo simulations. Null expectations for genetic differentiation (FST) were compared with actual sequence variation from four highly polymorphic nuclear loci. Four colonization scenarios that were modeled led to unique genetic signatures that could be used to interpret empirical data. Unless current gene flow across Latin America was assumed to be very high, we could reject colonizations consisting of multiple introductions, each of low genetic diversity. Further, if simulated populations were small (Ne = 5 \u00d7 102 individuals per population), small invasions from a single source consistently produced FST values comparable to those currently observed in Latin America. In contrast, only large invasions from diverse sources were compatible with the observed data for large populations (Ne \u2265 5 \u00d7 103). This study demonstrates that alternative population genetic hypotheses can be tested empirically even when departures from equilibrium are extreme, and that population genetic theory can be used to explore the processes that underlie biological invasions.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1014559617282", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1023142", 
        "issn": [
          "1387-3547", 
          "1573-1464"
        ], 
        "name": "Biological Invasions", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "colonization scenario", 
      "polymorphic nuclear loci", 
      "current gene flow", 
      "low genetic diversity", 
      "population genetics theory", 
      "invasive agricultural pest", 
      "population genetic hypotheses", 
      "wide host range", 
      "Mediterranean fruit fly", 
      "unique genetic signature", 
      "invasion genetics", 
      "genetic differentiation", 
      "nuclear loci", 
      "gene flow", 
      "FST values", 
      "genetic diversity", 
      "biological invasions", 
      "null expectation", 
      "fruit fly", 
      "agricultural pests", 
      "genetic theory", 
      "sequence variation", 
      "host range", 
      "medfly populations", 
      "genetic signatures", 
      "multiple introductions", 
      "population dynamics", 
      "null model", 
      "medfly", 
      "genetic hypothesis", 
      "global distribution", 
      "invasion", 
      "historical parameters", 
      "large invasion", 
      "pests", 
      "loci", 
      "diverse sources", 
      "genetics", 
      "large population", 
      "flies", 
      "population", 
      "diversity", 
      "differentiation", 
      "colonization", 
      "America", 
      "potential influence", 
      "small invasion", 
      "Mexico", 
      "signatures", 
      "variation", 
      "contrast", 
      "hypothesis", 
      "understanding", 
      "Peru", 
      "dynamics", 
      "empirical data", 
      "source", 
      "data", 
      "distribution", 
      "process", 
      "study", 
      "efforts", 
      "range", 
      "Latin America", 
      "introduction", 
      "single source", 
      "scenarios", 
      "United States", 
      "equilibrium", 
      "influence", 
      "state", 
      "model", 
      "departure", 
      "observed data", 
      "expectations", 
      "values", 
      "flow", 
      "parameters", 
      "simulations", 
      "theory", 
      "Monte Carlo simulations", 
      "Carlo simulations", 
      "population genetic null models", 
      "genetic null models", 
      "actual sequence variation", 
      "alternative population genetic hypotheses", 
      "underlie biological invasions", 
      "New World Medflies", 
      "World Medflies", 
      "Alternative Colonization Scenarios"
    ], 
    "name": "Invasion Genetics of New World Medflies: Testing Alternative Colonization Scenarios", 
    "pagination": "103-111", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024363686"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1014559617282"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1014559617282", 
      "https://app.dimensions.ai/details/publication/pub.1024363686"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_318.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1014559617282"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1014559617282'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1014559617282'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1014559617282'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1014559617282'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      22 PREDICATES      120 URIs      108 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1014559617282 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N5811f14ac7fb4b5b992ece86374010ef
4 schema:citation sg:pub.10.1023/a:1010090414598
5 sg:pub.10.1038/hdy.1991.98
6 sg:pub.10.1038/hdy.1992.102
7 sg:pub.10.1038/hdy.1995.60
8 schema:datePublished 2001-06
9 schema:datePublishedReg 2001-06-01
10 schema:description The Mediterranean fruit fly (Ceratitis capitata) is an invasive agricultural pest with a wide host range and a nearly global distribution. Efforts to forgo the medfly's spread into the United States are dependent on an understanding of population dynamics in newly established populations elsewhere. To explore the potential influence of demographic and historical parameters in six medfly populations distributed from Mexico to Peru, we created population genetic null models using Monte Carlo simulations. Null expectations for genetic differentiation (FST) were compared with actual sequence variation from four highly polymorphic nuclear loci. Four colonization scenarios that were modeled led to unique genetic signatures that could be used to interpret empirical data. Unless current gene flow across Latin America was assumed to be very high, we could reject colonizations consisting of multiple introductions, each of low genetic diversity. Further, if simulated populations were small (Ne = 5 × 102 individuals per population), small invasions from a single source consistently produced FST values comparable to those currently observed in Latin America. In contrast, only large invasions from diverse sources were compatible with the observed data for large populations (Ne ≥ 5 × 103). This study demonstrates that alternative population genetic hypotheses can be tested empirically even when departures from equilibrium are extreme, and that population genetic theory can be used to explore the processes that underlie biological invasions.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N5194e1c052f9497394c054274fb02b4a
15 N6fb0c193c29f4df09c4c74b95ecc486b
16 sg:journal.1023142
17 schema:keywords Alternative Colonization Scenarios
18 America
19 Carlo simulations
20 FST values
21 Latin America
22 Mediterranean fruit fly
23 Mexico
24 Monte Carlo simulations
25 New World Medflies
26 Peru
27 United States
28 World Medflies
29 actual sequence variation
30 agricultural pests
31 alternative population genetic hypotheses
32 biological invasions
33 colonization
34 colonization scenario
35 contrast
36 current gene flow
37 data
38 departure
39 differentiation
40 distribution
41 diverse sources
42 diversity
43 dynamics
44 efforts
45 empirical data
46 equilibrium
47 expectations
48 flies
49 flow
50 fruit fly
51 gene flow
52 genetic differentiation
53 genetic diversity
54 genetic hypothesis
55 genetic null models
56 genetic signatures
57 genetic theory
58 genetics
59 global distribution
60 historical parameters
61 host range
62 hypothesis
63 influence
64 introduction
65 invasion
66 invasion genetics
67 invasive agricultural pest
68 large invasion
69 large population
70 loci
71 low genetic diversity
72 medfly
73 medfly populations
74 model
75 multiple introductions
76 nuclear loci
77 null expectation
78 null model
79 observed data
80 parameters
81 pests
82 polymorphic nuclear loci
83 population
84 population dynamics
85 population genetic hypotheses
86 population genetic null models
87 population genetics theory
88 potential influence
89 process
90 range
91 scenarios
92 sequence variation
93 signatures
94 simulations
95 single source
96 small invasion
97 source
98 state
99 study
100 theory
101 underlie biological invasions
102 understanding
103 unique genetic signature
104 values
105 variation
106 wide host range
107 schema:name Invasion Genetics of New World Medflies: Testing Alternative Colonization Scenarios
108 schema:pagination 103-111
109 schema:productId N188de2dc2f494fe5b03799635b3aad7d
110 N5dd6af8a537e42609a7aeeaf0c5b3aaa
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024363686
112 https://doi.org/10.1023/a:1014559617282
113 schema:sdDatePublished 2021-11-01T18:03
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N00a6548988d44f06ab189ee80750dd1f
116 schema:url https://doi.org/10.1023/a:1014559617282
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N00a6548988d44f06ab189ee80750dd1f schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 N188de2dc2f494fe5b03799635b3aad7d schema:name doi
123 schema:value 10.1023/a:1014559617282
124 rdf:type schema:PropertyValue
125 N4993b9bf621b40ab942a8f221e56cedc rdf:first sg:person.01077676271.09
126 rdf:rest rdf:nil
127 N5194e1c052f9497394c054274fb02b4a schema:volumeNumber 3
128 rdf:type schema:PublicationVolume
129 N5811f14ac7fb4b5b992ece86374010ef rdf:first sg:person.01357255340.97
130 rdf:rest N6f5ff03a5377440f86a0a43f86d50141
131 N5dd6af8a537e42609a7aeeaf0c5b3aaa schema:name dimensions_id
132 schema:value pub.1024363686
133 rdf:type schema:PropertyValue
134 N60615fe6cd45447b8b1888455982d831 rdf:first sg:person.01307413640.05
135 rdf:rest N4993b9bf621b40ab942a8f221e56cedc
136 N6f5ff03a5377440f86a0a43f86d50141 rdf:first sg:person.01137600007.12
137 rdf:rest N60615fe6cd45447b8b1888455982d831
138 N6fb0c193c29f4df09c4c74b95ecc486b schema:issueNumber 2
139 rdf:type schema:PublicationIssue
140 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
141 schema:name Biological Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
144 schema:name Genetics
145 rdf:type schema:DefinedTerm
146 sg:journal.1023142 schema:issn 1387-3547
147 1573-1464
148 schema:name Biological Invasions
149 schema:publisher Springer Nature
150 rdf:type schema:Periodical
151 sg:person.01077676271.09 schema:affiliation grid-institutes:grid.47840.3f
152 schema:familyName Roderick
153 schema:givenName George K.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077676271.09
155 rdf:type schema:Person
156 sg:person.01137600007.12 schema:affiliation grid-institutes:grid.47840.3f
157 schema:familyName Davies
158 schema:givenName Neil
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137600007.12
160 rdf:type schema:Person
161 sg:person.01307413640.05 schema:affiliation grid-institutes:grid.253547.2
162 schema:familyName Villablanca
163 schema:givenName Francis X.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307413640.05
165 rdf:type schema:Person
166 sg:person.01357255340.97 schema:affiliation grid-institutes:grid.263081.e
167 schema:familyName Bohonak
168 schema:givenName Andrew J.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357255340.97
170 rdf:type schema:Person
171 sg:pub.10.1023/a:1010090414598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013844124
172 https://doi.org/10.1023/a:1010090414598
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/hdy.1991.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032738010
175 https://doi.org/10.1038/hdy.1991.98
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/hdy.1992.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005557730
178 https://doi.org/10.1038/hdy.1992.102
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/hdy.1995.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049476151
181 https://doi.org/10.1038/hdy.1995.60
182 rdf:type schema:CreativeWork
183 grid-institutes:grid.253547.2 schema:alternateName Biological Science Department, California Polytechnic State University, 93407, San Luis Obispo, CA, USA
184 schema:name Biological Science Department, California Polytechnic State University, 93407, San Luis Obispo, CA, USA
185 rdf:type schema:Organization
186 grid-institutes:grid.263081.e schema:alternateName Department of Biology, San Diego State University, 92182-4614, San Diego, CA, USA; Author for correspondence (e-mail
187 schema:name Department of Biology, San Diego State University, 92182-4614, San Diego, CA, USA; Author for correspondence (e-mail
188 rdf:type schema:Organization
189 grid-institutes:grid.47840.3f schema:alternateName Division of Insect Biology, Department of Environmental Science, Policy and Management, University of California, 201 Wellman Hall #3112, 94720-3, Berkeley, CA, USA
190 Gump Research Station, University of California, 101 Giannini Hall #3100, 94720-3100, Berkeley, CA, USA
191 schema:name Division of Insect Biology, Department of Environmental Science, Policy and Management, University of California, 201 Wellman Hall #3112, 94720-3, Berkeley, CA, USA
192 Gump Research Station, University of California, 101 Giannini Hall #3100, 94720-3100, Berkeley, CA, USA
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...