Multigrid Computation of Axisymmetric Electromagnetic Fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-05

AUTHORS

S. Börm, R. Hiptmair

ABSTRACT

The focus of this paper is on boundary value problems for Maxwell's equations that feature cylindrical symmetry both of the domain Ω⊂R3 and the data. Thus, by resorting to cylindrical coordinates, a reduction to two dimensions is possible. However, cylindrical coordinates introduce a potentially malicious singularity at the axis rendering the variational problems degenerate. As a consequence, the analysis of multigrid solvers along the lines of variational multigrid theory confronts severe difficulties. Line relaxation in radial direction and semicoarsening can successfully reign in the degeneracy. In addition, the lack of H1-ellipticity of the double-curl operator entails using special hybrid smoothing procedures. All these techniques combined yield a fast multigrid solver. The theoretical investigation of the method relies on blending generalized Fourier techniques and modern variational multigrid theory. We first determine invariant subspaces of the multigrid iteration operator and analyze the smoothers therein. Under certain assumptions on the material parameters we manage to show uniform convergence of a symmetric V-cycle. More... »

PAGES

331-356

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1014533409747

DOI

http://dx.doi.org/10.1023/a:1014533409747

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045949792


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kiel University", 
          "id": "https://www.grid.ac/institutes/grid.9764.c", 
          "name": [
            "Institut f\u00fcr Praktische Mathematik, Universit\u00e4t Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00f6rm", 
        "givenName": "S.", 
        "id": "sg:person.016063530723.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016063530723.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of T\u00fcbingen", 
          "id": "https://www.grid.ac/institutes/grid.10392.39", 
          "name": [
            "Sonderforschungsbereich 382, Universit\u00e4t T\u00fcbingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hiptmair", 
        "givenName": "R.", 
        "id": "sg:person.011316230741.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011316230741.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0025-5718-1991-1052086-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006772418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01396415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009509743", 
          "https://doi.org/10.1007/bf01396415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0898-1221(97)00009-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011952068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(89)90121-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014012838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4288-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014836955", 
          "https://doi.org/10.1007/978-1-4612-4288-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4288-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014836955", 
          "https://doi.org/10.1007/978-1-4612-4288-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00452998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016867540", 
          "https://doi.org/10.1007/bf00452998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00452998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016867540", 
          "https://doi.org/10.1007/bf00452998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156939394x00993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017343472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8524-9_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020802711", 
          "https://doi.org/10.1007/978-3-0348-8524-9_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8524-9_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020802711", 
          "https://doi.org/10.1007/978-3-0348-8524-9_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002110050196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022637451", 
          "https://doi.org/10.1007/s002110050196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016686408271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023821589", 
          "https://doi.org/10.1023/a:1016686408271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1992-1122058-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024702821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-0427(94)00106-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025910000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01385872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027862895", 
          "https://doi.org/10.1007/bf01385872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01389668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030949606", 
          "https://doi.org/10.1007/bf01389668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002110050465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031200848", 
          "https://doi.org/10.1007/s002110050465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1176-1_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036682523", 
          "https://doi.org/10.1007/978-1-4612-1176-1_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1176-1_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036682523", 
          "https://doi.org/10.1007/978-1-4612-1176-1_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-1204(199607)9:4<295::aid-jnm240>3.0.co;2-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037368763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00005386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039452150", 
          "https://doi.org/10.1007/pl00005386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1997.5854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040106178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01385873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043093601", 
          "https://doi.org/10.1007/bf01385873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-97-00826-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046682101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.1966.1138693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061490079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3424474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062120519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0720066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0728081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062853671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0729045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062853725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0731021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062853892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0913064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062857500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0916020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062857718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1034116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062863418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036142997326203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827596305829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062884455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an/1992260607391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083427101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an/1995290201711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083427189"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-05", 
    "datePublishedReg": "2002-05-01", 
    "description": "The focus of this paper is on boundary value problems for Maxwell's equations that feature cylindrical symmetry both of the domain \u03a9\u2282R3 and the data. Thus, by resorting to cylindrical coordinates, a reduction to two dimensions is possible. However, cylindrical coordinates introduce a potentially malicious singularity at the axis rendering the variational problems degenerate. As a consequence, the analysis of multigrid solvers along the lines of variational multigrid theory confronts severe difficulties. Line relaxation in radial direction and semicoarsening can successfully reign in the degeneracy. In addition, the lack of H1-ellipticity of the double-curl operator entails using special hybrid smoothing procedures. All these techniques combined yield a fast multigrid solver. The theoretical investigation of the method relies on blending generalized Fourier techniques and modern variational multigrid theory. We first determine invariant subspaces of the multigrid iteration operator and analyze the smoothers therein. Under certain assumptions on the material parameters we manage to show uniform convergence of a symmetric V-cycle.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1014533409747", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1045108", 
        "issn": [
          "1019-7168", 
          "1572-9044"
        ], 
        "name": "Advances in Computational Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Multigrid Computation of Axisymmetric Electromagnetic Fields", 
    "pagination": "331-356", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dae0f10eb5aa84582d4ae5980a94eb15060c4045d099565dd3b34c93ee6c26c4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1014533409747"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045949792"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1014533409747", 
      "https://app.dimensions.ai/details/publication/pub.1045949792"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1014533409747"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1014533409747'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1014533409747'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1014533409747'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1014533409747'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1014533409747 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndda97b7647394e419e9eaf396d2fa774
4 schema:citation sg:pub.10.1007/978-1-4612-1176-1_8
5 sg:pub.10.1007/978-1-4612-4288-8
6 sg:pub.10.1007/978-3-0348-8524-9_4
7 sg:pub.10.1007/bf00452998
8 sg:pub.10.1007/bf01385872
9 sg:pub.10.1007/bf01385873
10 sg:pub.10.1007/bf01389668
11 sg:pub.10.1007/bf01396415
12 sg:pub.10.1007/pl00005386
13 sg:pub.10.1007/s002110050196
14 sg:pub.10.1007/s002110050465
15 sg:pub.10.1023/a:1016686408271
16 https://doi.org/10.1002/(sici)1099-1204(199607)9:4<295::aid-jnm240>3.0.co;2-8
17 https://doi.org/10.1006/jcph.1997.5854
18 https://doi.org/10.1016/0021-9991(89)90121-6
19 https://doi.org/10.1016/0377-0427(94)00106-8
20 https://doi.org/10.1016/s0898-1221(97)00009-6
21 https://doi.org/10.1051/m2an/1992260607391
22 https://doi.org/10.1051/m2an/1995290201711
23 https://doi.org/10.1090/s0025-5718-1991-1052086-4
24 https://doi.org/10.1090/s0025-5718-1992-1122058-0
25 https://doi.org/10.1090/s0025-5718-97-00826-0
26 https://doi.org/10.1109/tap.1966.1138693
27 https://doi.org/10.1115/1.3424474
28 https://doi.org/10.1137/0720066
29 https://doi.org/10.1137/0728081
30 https://doi.org/10.1137/0729045
31 https://doi.org/10.1137/0731021
32 https://doi.org/10.1137/0913064
33 https://doi.org/10.1137/0916020
34 https://doi.org/10.1137/1034116
35 https://doi.org/10.1137/s0036142997326203
36 https://doi.org/10.1137/s1064827596305829
37 https://doi.org/10.1163/156939394x00993
38 schema:datePublished 2002-05
39 schema:datePublishedReg 2002-05-01
40 schema:description The focus of this paper is on boundary value problems for Maxwell's equations that feature cylindrical symmetry both of the domain Ω⊂R3 and the data. Thus, by resorting to cylindrical coordinates, a reduction to two dimensions is possible. However, cylindrical coordinates introduce a potentially malicious singularity at the axis rendering the variational problems degenerate. As a consequence, the analysis of multigrid solvers along the lines of variational multigrid theory confronts severe difficulties. Line relaxation in radial direction and semicoarsening can successfully reign in the degeneracy. In addition, the lack of H1-ellipticity of the double-curl operator entails using special hybrid smoothing procedures. All these techniques combined yield a fast multigrid solver. The theoretical investigation of the method relies on blending generalized Fourier techniques and modern variational multigrid theory. We first determine invariant subspaces of the multigrid iteration operator and analyze the smoothers therein. Under certain assumptions on the material parameters we manage to show uniform convergence of a symmetric V-cycle.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N16e10d9f34cc4f1bb522f6cd6c00ad25
45 N9aa752f6eba34666b104d808794f930e
46 sg:journal.1045108
47 schema:name Multigrid Computation of Axisymmetric Electromagnetic Fields
48 schema:pagination 331-356
49 schema:productId N324c7e4c62724738970f986c8e505396
50 Ne403e05e0c0b4b058737f67d47af5f95
51 Nf5ff8a99f3064c3aaa79cb715481448c
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045949792
53 https://doi.org/10.1023/a:1014533409747
54 schema:sdDatePublished 2019-04-10T22:30
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nb19b746d209b4144b0c372a60100613b
57 schema:url http://link.springer.com/10.1023/A:1014533409747
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N16e10d9f34cc4f1bb522f6cd6c00ad25 schema:volumeNumber 16
62 rdf:type schema:PublicationVolume
63 N324c7e4c62724738970f986c8e505396 schema:name readcube_id
64 schema:value dae0f10eb5aa84582d4ae5980a94eb15060c4045d099565dd3b34c93ee6c26c4
65 rdf:type schema:PropertyValue
66 N9aa752f6eba34666b104d808794f930e schema:issueNumber 4
67 rdf:type schema:PublicationIssue
68 Naff34e6698c2405aad95bb890b10bb9f rdf:first sg:person.011316230741.77
69 rdf:rest rdf:nil
70 Nb19b746d209b4144b0c372a60100613b schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Ndda97b7647394e419e9eaf396d2fa774 rdf:first sg:person.016063530723.23
73 rdf:rest Naff34e6698c2405aad95bb890b10bb9f
74 Ne403e05e0c0b4b058737f67d47af5f95 schema:name doi
75 schema:value 10.1023/a:1014533409747
76 rdf:type schema:PropertyValue
77 Nf5ff8a99f3064c3aaa79cb715481448c schema:name dimensions_id
78 schema:value pub.1045949792
79 rdf:type schema:PropertyValue
80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
84 schema:name Pure Mathematics
85 rdf:type schema:DefinedTerm
86 sg:journal.1045108 schema:issn 1019-7168
87 1572-9044
88 schema:name Advances in Computational Mathematics
89 rdf:type schema:Periodical
90 sg:person.011316230741.77 schema:affiliation https://www.grid.ac/institutes/grid.10392.39
91 schema:familyName Hiptmair
92 schema:givenName R.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011316230741.77
94 rdf:type schema:Person
95 sg:person.016063530723.23 schema:affiliation https://www.grid.ac/institutes/grid.9764.c
96 schema:familyName Börm
97 schema:givenName S.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016063530723.23
99 rdf:type schema:Person
100 sg:pub.10.1007/978-1-4612-1176-1_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036682523
101 https://doi.org/10.1007/978-1-4612-1176-1_8
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-1-4612-4288-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014836955
104 https://doi.org/10.1007/978-1-4612-4288-8
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-3-0348-8524-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020802711
107 https://doi.org/10.1007/978-3-0348-8524-9_4
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf00452998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016867540
110 https://doi.org/10.1007/bf00452998
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf01385872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027862895
113 https://doi.org/10.1007/bf01385872
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf01385873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043093601
116 https://doi.org/10.1007/bf01385873
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf01389668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030949606
119 https://doi.org/10.1007/bf01389668
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf01396415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009509743
122 https://doi.org/10.1007/bf01396415
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/pl00005386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039452150
125 https://doi.org/10.1007/pl00005386
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s002110050196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022637451
128 https://doi.org/10.1007/s002110050196
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s002110050465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031200848
131 https://doi.org/10.1007/s002110050465
132 rdf:type schema:CreativeWork
133 sg:pub.10.1023/a:1016686408271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023821589
134 https://doi.org/10.1023/a:1016686408271
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/(sici)1099-1204(199607)9:4<295::aid-jnm240>3.0.co;2-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037368763
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1006/jcph.1997.5854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040106178
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0021-9991(89)90121-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014012838
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0377-0427(94)00106-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025910000
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0898-1221(97)00009-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011952068
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1051/m2an/1992260607391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083427101
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1051/m2an/1995290201711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083427189
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1090/s0025-5718-1991-1052086-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006772418
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1090/s0025-5718-1992-1122058-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024702821
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1090/s0025-5718-97-00826-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046682101
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/tap.1966.1138693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061490079
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1115/1.3424474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062120519
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1137/0720066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852954
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1137/0728081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062853671
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1137/0729045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062853725
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1137/0731021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062853892
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1137/0913064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062857500
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1137/0916020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062857718
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1137/1034116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062863418
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1137/s0036142997326203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877495
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1137/s1064827596305829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062884455
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1163/156939394x00993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017343472
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.10392.39 schema:alternateName University of Tübingen
181 schema:name Sonderforschungsbereich 382, Universität Tübingen, Germany
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.9764.c schema:alternateName Kiel University
184 schema:name Institut für Praktische Mathematik, Universität Kiel, Germany
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...