Diffeomorphisms of the Circle and the Beurling–Helson Theorem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-01

AUTHORS

V. V. Lebedev

ABSTRACT

We consider the algebra of absolutely convergent Fourier series on the circle . According to the Beurling–Helson theorem, the condition , implies that is trivial: . We construct a nontrivial diffeomorphism of onto itself such that , where δ(n) is an arbitrary given sequence with . By analogy with a conjecture due to Kahane, it is natural to suppose that this rate of growth is the slowest possible. More... »

PAGES

25-29

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1014426116729

DOI

http://dx.doi.org/10.1023/a:1014426116729

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005367067


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State Institute of Electronics and Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.446237.0", 
          "name": [
            "Moscow State Institute of Electronics and Mathematics, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lebedev", 
        "givenName": "V. V.", 
        "id": "sg:person.01175464362.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175464362.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.7146/math.scand.a-10371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073612503"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-01", 
    "datePublishedReg": "2002-01-01", 
    "description": "We consider the algebra of absolutely convergent Fourier series on the circle . According to the Beurling\u2013Helson theorem, the condition , implies that is trivial: . We construct a nontrivial diffeomorphism of onto itself such that , where \u03b4(n) is an arbitrary given sequence with . By analogy with a conjecture due to Kahane, it is natural to suppose that this rate of growth is the slowest possible.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1014426116729", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136154", 
        "issn": [
          "0016-2663", 
          "2305-2899"
        ], 
        "name": "Functional Analysis and Its Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "Diffeomorphisms of the Circle and the Beurling\u2013Helson Theorem", 
    "pagination": "25-29", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1991f0e96125a46487ce15355ac0c1c1425ef87d1947e34dd425a8c05209d78d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1014426116729"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005367067"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1014426116729", 
      "https://app.dimensions.ai/details/publication/pub.1005367067"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1014426116729"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1014426116729'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1014426116729'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1014426116729'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1014426116729'


 

This table displays all metadata directly associated to this object as RDF triples.

64 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1014426116729 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N8a9ba17a80c74eda8907f3b5920a039b
4 schema:citation https://doi.org/10.7146/math.scand.a-10371
5 schema:datePublished 2002-01
6 schema:datePublishedReg 2002-01-01
7 schema:description We consider the algebra of absolutely convergent Fourier series on the circle . According to the Beurling–Helson theorem, the condition , implies that is trivial: . We construct a nontrivial diffeomorphism of onto itself such that , where δ(n) is an arbitrary given sequence with . By analogy with a conjecture due to Kahane, it is natural to suppose that this rate of growth is the slowest possible.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N09f8c476b49e497baec341cb55c9087a
12 N4422feb2ce9249b090f5f5b9356c4693
13 sg:journal.1136154
14 schema:name Diffeomorphisms of the Circle and the Beurling–Helson Theorem
15 schema:pagination 25-29
16 schema:productId Naaac1dfccf17442899157c79630fb283
17 Naf8e8ff8651f4ef08ff6f72c64cdf68e
18 Nb6429745524045fcb53d7335b1481382
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005367067
20 https://doi.org/10.1023/a:1014426116729
21 schema:sdDatePublished 2019-04-10T19:06
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N23123a49927f473d971075fe65a05115
24 schema:url http://link.springer.com/10.1023/A:1014426116729
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N09f8c476b49e497baec341cb55c9087a schema:issueNumber 1
29 rdf:type schema:PublicationIssue
30 N23123a49927f473d971075fe65a05115 schema:name Springer Nature - SN SciGraph project
31 rdf:type schema:Organization
32 N4422feb2ce9249b090f5f5b9356c4693 schema:volumeNumber 36
33 rdf:type schema:PublicationVolume
34 N8a9ba17a80c74eda8907f3b5920a039b rdf:first sg:person.01175464362.06
35 rdf:rest rdf:nil
36 Naaac1dfccf17442899157c79630fb283 schema:name doi
37 schema:value 10.1023/a:1014426116729
38 rdf:type schema:PropertyValue
39 Naf8e8ff8651f4ef08ff6f72c64cdf68e schema:name dimensions_id
40 schema:value pub.1005367067
41 rdf:type schema:PropertyValue
42 Nb6429745524045fcb53d7335b1481382 schema:name readcube_id
43 schema:value 1991f0e96125a46487ce15355ac0c1c1425ef87d1947e34dd425a8c05209d78d
44 rdf:type schema:PropertyValue
45 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
46 schema:name Mathematical Sciences
47 rdf:type schema:DefinedTerm
48 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
49 schema:name Pure Mathematics
50 rdf:type schema:DefinedTerm
51 sg:journal.1136154 schema:issn 0016-2663
52 2305-2899
53 schema:name Functional Analysis and Its Applications
54 rdf:type schema:Periodical
55 sg:person.01175464362.06 schema:affiliation https://www.grid.ac/institutes/grid.446237.0
56 schema:familyName Lebedev
57 schema:givenName V. V.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175464362.06
59 rdf:type schema:Person
60 https://doi.org/10.7146/math.scand.a-10371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073612503
61 rdf:type schema:CreativeWork
62 https://www.grid.ac/institutes/grid.446237.0 schema:alternateName Moscow State Institute of Electronics and Mathematics
63 schema:name Moscow State Institute of Electronics and Mathematics, Russia
64 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...