Multiple Zeta Values at Non-Positive Integers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-12

AUTHORS

Shigeki Akiyama, Yoshio Tanigawa

ABSTRACT

Values of Euler-Zagier's multiple zeta function at non-positive integers are studied, especially at (0,0,...,−n) and (−n,0,...,0). Further we prove a symmetric formula among values at non-positive integers.

PAGES

327-351

References to SciGraph publications

  • 1949-12. The mean-value of the Riemann zeta function in ACTA MATHEMATICA
  • 1986-06. Exploiting the 1, 440-fold symmetry of the master two-loop diagram in ZEITSCHRIFT FÜR PHYSIK C PARTICLES AND FIELDS
  • 1991-12. Asymptotic expansions of the mean values of DirichletL-functions in MATHEMATISCHE ZEITSCHRIFT
  • 1997-09. Beyond the triangle and uniqueness relations: non-zeta counterterms at large N from positive knots in ZEITSCHRIFT FÜR PHYSIK C PARTICLES AND FIELDS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1013981102941

    DOI

    http://dx.doi.org/10.1023/a:1013981102941

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019952867


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan", 
              "id": "http://www.grid.ac/institutes/grid.260975.f", 
              "name": [
                "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akiyama", 
            "givenName": "Shigeki", 
            "id": "sg:person.011153327405.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Graduate School of Mathematics, Nagoya University, 464-8602, Chikusa-ku, Nagoya, Japan", 
              "id": "http://www.grid.ac/institutes/grid.27476.30", 
              "name": [
                "Graduate School of Mathematics, Nagoya University, 464-8602, Chikusa-ku, Nagoya, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tanigawa", 
            "givenName": "Yoshio", 
            "id": "sg:person.011234672121.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011234672121.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01552503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007096909", 
              "https://doi.org/10.1007/bf01552503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02571507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002947278", 
              "https://doi.org/10.1007/bf02571507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002880050500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053029624", 
              "https://doi.org/10.1007/s002880050500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02395027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020041458", 
              "https://doi.org/10.1007/bf02395027"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-12", 
        "datePublishedReg": "2001-12-01", 
        "description": "Values of Euler-Zagier's multiple zeta function at non-positive integers are studied, especially at (0,0,...,\u2212n) and (\u2212n,0,...,0). Further we prove a symmetric formula among values at non-positive integers.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1013981102941", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136382", 
            "issn": [
              "1382-4090", 
              "1572-9303"
            ], 
            "name": "The Ramanujan Journal", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "5"
          }
        ], 
        "keywords": [
          "function", 
          "values", 
          "formula", 
          "multiple zeta functions", 
          "integers", 
          "non-positive integers", 
          "zeta function", 
          "symmetric formula", 
          "multiple zeta values", 
          "zeta values"
        ], 
        "name": "Multiple Zeta Values at Non-Positive Integers", 
        "pagination": "327-351", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019952867"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1013981102941"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1013981102941", 
          "https://app.dimensions.ai/details/publication/pub.1019952867"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_328.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1013981102941"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1013981102941'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1013981102941'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1013981102941'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1013981102941'


     

    This table displays all metadata directly associated to this object as RDF triples.

    94 TRIPLES      22 PREDICATES      40 URIs      28 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1013981102941 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N4f253182afb64f4193b6e04df3cdaef5
    4 schema:citation sg:pub.10.1007/bf01552503
    5 sg:pub.10.1007/bf02395027
    6 sg:pub.10.1007/bf02571507
    7 sg:pub.10.1007/s002880050500
    8 schema:datePublished 2001-12
    9 schema:datePublishedReg 2001-12-01
    10 schema:description Values of Euler-Zagier's multiple zeta function at non-positive integers are studied, especially at (0,0,...,−n) and (−n,0,...,0). Further we prove a symmetric formula among values at non-positive integers.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf Nd1685739fd4b4193a49250e2e450920e
    15 Neb703c78fc9f4f6a9074ec4c0b9b316e
    16 sg:journal.1136382
    17 schema:keywords formula
    18 function
    19 integers
    20 multiple zeta functions
    21 multiple zeta values
    22 non-positive integers
    23 symmetric formula
    24 values
    25 zeta function
    26 zeta values
    27 schema:name Multiple Zeta Values at Non-Positive Integers
    28 schema:pagination 327-351
    29 schema:productId N33fe88ace426460f801f3aa974d64647
    30 Nab452faaf28247cda54132a744c49ed1
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019952867
    32 https://doi.org/10.1023/a:1013981102941
    33 schema:sdDatePublished 2022-05-20T07:21
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N97dd64e6983e4981807499113304fe4f
    36 schema:url https://doi.org/10.1023/a:1013981102941
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N33fe88ace426460f801f3aa974d64647 schema:name dimensions_id
    41 schema:value pub.1019952867
    42 rdf:type schema:PropertyValue
    43 N4f253182afb64f4193b6e04df3cdaef5 rdf:first sg:person.011153327405.03
    44 rdf:rest N5663b721295d41ffa3fa4c86fb8a5f38
    45 N5663b721295d41ffa3fa4c86fb8a5f38 rdf:first sg:person.011234672121.61
    46 rdf:rest rdf:nil
    47 N97dd64e6983e4981807499113304fe4f schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 Nab452faaf28247cda54132a744c49ed1 schema:name doi
    50 schema:value 10.1023/a:1013981102941
    51 rdf:type schema:PropertyValue
    52 Nd1685739fd4b4193a49250e2e450920e schema:issueNumber 4
    53 rdf:type schema:PublicationIssue
    54 Neb703c78fc9f4f6a9074ec4c0b9b316e schema:volumeNumber 5
    55 rdf:type schema:PublicationVolume
    56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Mathematical Sciences
    58 rdf:type schema:DefinedTerm
    59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Pure Mathematics
    61 rdf:type schema:DefinedTerm
    62 sg:journal.1136382 schema:issn 1382-4090
    63 1572-9303
    64 schema:name The Ramanujan Journal
    65 schema:publisher Springer Nature
    66 rdf:type schema:Periodical
    67 sg:person.011153327405.03 schema:affiliation grid-institutes:grid.260975.f
    68 schema:familyName Akiyama
    69 schema:givenName Shigeki
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03
    71 rdf:type schema:Person
    72 sg:person.011234672121.61 schema:affiliation grid-institutes:grid.27476.30
    73 schema:familyName Tanigawa
    74 schema:givenName Yoshio
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011234672121.61
    76 rdf:type schema:Person
    77 sg:pub.10.1007/bf01552503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007096909
    78 https://doi.org/10.1007/bf01552503
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/bf02395027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020041458
    81 https://doi.org/10.1007/bf02395027
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/bf02571507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002947278
    84 https://doi.org/10.1007/bf02571507
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/s002880050500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053029624
    87 https://doi.org/10.1007/s002880050500
    88 rdf:type schema:CreativeWork
    89 grid-institutes:grid.260975.f schema:alternateName Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan
    90 schema:name Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, 950-2181, Niigata, Japan
    91 rdf:type schema:Organization
    92 grid-institutes:grid.27476.30 schema:alternateName Graduate School of Mathematics, Nagoya University, 464-8602, Chikusa-ku, Nagoya, Japan
    93 schema:name Graduate School of Mathematics, Nagoya University, 464-8602, Chikusa-ku, Nagoya, Japan
    94 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...