Equilibrium of a Degenerate Gas of Nucleons and Electrons in a Strong Magnetic Field View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-01

AUTHORS

V. R. Khalilov

ABSTRACT

A model of a degenerate ideal gas of nucleons and electrons in a superstrong magnetic field is used to describe the state of matter in the central region of a strongly magnetized neutron star. The influence of a constant uniform superstrong magnetic field on the equilibrium conditions and the equation of state for the degenerate gas of neutrons, protons, and electrons is investigated in the framework of this model. The contribution determined by the interaction of the anomalous magnetic moments of the fermions with the magnetic field is taken into account. The influence of the superstrong magnetic field on the process of gravitational collapse of a magnetized neutron star is discussed under the assumption that the central region of the star consists mostly of degenerate neutrons. We show that if the densities of electrons, protons, and neutrons are relatively low depending on the field strength, the fermion gases in a superstrong uniform magnetic field become totally polarized with respect to the spin. We discuss the possibility of spontaneous magnetization occurring in a system of degenerate neutrons where the exchange interaction effects are taken into account. More... »

PAGES

74-91

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1013880415412

DOI

http://dx.doi.org/10.1023/a:1013880415412

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044514575


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khalilov", 
        "givenName": "V. R.", 
        "id": "sg:person.013233115763.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233115763.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/10556799308230566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004515013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(94)90099-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010103804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(94)90099-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010103804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.3311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015219043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.3311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015219043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010320001946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015509107", 
          "https://doi.org/10.1023/a:1010320001946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019483518", 
          "https://doi.org/10.1038/30410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019483518", 
          "https://doi.org/10.1038/30410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019744850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019744850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-09246-3_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032785524", 
          "https://doi.org/10.1007/3-540-09246-3_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032811031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032811031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.60.033003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033208063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.60.033003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033208063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/282240a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041687869", 
          "https://doi.org/10.1038/282240a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(96)00430-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043075329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/16199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047387262", 
          "https://doi.org/10.1038/16199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/170831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058502121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/182617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058512128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/186413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058515922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/309010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058616529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.115.254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060421905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.115.254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060421905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.173.1210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060439163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.173.1210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060439163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.20.1795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060687431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.20.1795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060687431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.51.1886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060702916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.51.1886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060702916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.51.4591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060703021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.51.4591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060703021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.2701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.2701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217984996001309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062948617"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-01", 
    "datePublishedReg": "2001-01-01", 
    "description": "A model of a degenerate ideal gas of nucleons and electrons in a superstrong magnetic field is used to describe the state of matter in the central region of a strongly magnetized neutron star. The influence of a constant uniform superstrong magnetic field on the equilibrium conditions and the equation of state for the degenerate gas of neutrons, protons, and electrons is investigated in the framework of this model. The contribution determined by the interaction of the anomalous magnetic moments of the fermions with the magnetic field is taken into account. The influence of the superstrong magnetic field on the process of gravitational collapse of a magnetized neutron star is discussed under the assumption that the central region of the star consists mostly of degenerate neutrons. We show that if the densities of electrons, protons, and neutrons are relatively low depending on the field strength, the fermion gases in a superstrong uniform magnetic field become totally polarized with respect to the spin. We discuss the possibility of spontaneous magnetization occurring in a system of degenerate neutrons where the exchange interaction effects are taken into account.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1013880415412", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "2305-3135"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "130"
      }
    ], 
    "name": "Equilibrium of a Degenerate Gas of Nucleons and Electrons in a Strong Magnetic Field", 
    "pagination": "74-91", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d40a0d17fb1985bdff309364a09e5990dc4f08eaa1024542f9f2750394c85582"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1013880415412"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044514575"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1013880415412", 
      "https://app.dimensions.ai/details/publication/pub.1044514575"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1013880415412"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1013880415412'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1013880415412'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1013880415412'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1013880415412'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1013880415412 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Ncc0082b5b85942e78ab5ecf8b0f7b728
4 schema:citation sg:pub.10.1007/3-540-09246-3_2
5 sg:pub.10.1023/a:1010320001946
6 sg:pub.10.1038/16199
7 sg:pub.10.1038/282240a0
8 sg:pub.10.1038/30410
9 https://doi.org/10.1016/0370-1573(94)90099-x
10 https://doi.org/10.1016/0370-2693(96)00430-3
11 https://doi.org/10.1080/10556799308230566
12 https://doi.org/10.1086/170831
13 https://doi.org/10.1086/182617
14 https://doi.org/10.1086/186413
15 https://doi.org/10.1086/309010
16 https://doi.org/10.1103/physrev.100.463
17 https://doi.org/10.1103/physrev.115.254
18 https://doi.org/10.1103/physrev.173.1210
19 https://doi.org/10.1103/physrevd.20.1795
20 https://doi.org/10.1103/physrevd.51.1886
21 https://doi.org/10.1103/physrevd.51.4591
22 https://doi.org/10.1103/physrevd.60.033003
23 https://doi.org/10.1103/physrevlett.66.2701
24 https://doi.org/10.1103/physrevlett.78.2898
25 https://doi.org/10.1103/physrevlett.81.3311
26 https://doi.org/10.1103/physrevlett.84.5261
27 https://doi.org/10.1142/s0217984996001309
28 schema:datePublished 2001-01
29 schema:datePublishedReg 2001-01-01
30 schema:description A model of a degenerate ideal gas of nucleons and electrons in a superstrong magnetic field is used to describe the state of matter in the central region of a strongly magnetized neutron star. The influence of a constant uniform superstrong magnetic field on the equilibrium conditions and the equation of state for the degenerate gas of neutrons, protons, and electrons is investigated in the framework of this model. The contribution determined by the interaction of the anomalous magnetic moments of the fermions with the magnetic field is taken into account. The influence of the superstrong magnetic field on the process of gravitational collapse of a magnetized neutron star is discussed under the assumption that the central region of the star consists mostly of degenerate neutrons. We show that if the densities of electrons, protons, and neutrons are relatively low depending on the field strength, the fermion gases in a superstrong uniform magnetic field become totally polarized with respect to the spin. We discuss the possibility of spontaneous magnetization occurring in a system of degenerate neutrons where the exchange interaction effects are taken into account.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N38e6184889e446439f4833f60e0d15a8
35 N40d8e2df5814465889e86ff67a7f9f14
36 sg:journal.1327888
37 schema:name Equilibrium of a Degenerate Gas of Nucleons and Electrons in a Strong Magnetic Field
38 schema:pagination 74-91
39 schema:productId N1e83eaad6f0e490ab3f717903ddaca86
40 N7092c6f1f208465abe8b89e0a90dc577
41 N94767781d5ea47a8aadb4dfbe901f853
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044514575
43 https://doi.org/10.1023/a:1013880415412
44 schema:sdDatePublished 2019-04-10T16:39
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N81d51bbbf52a44cfb590274bbf6bc025
47 schema:url http://link.springer.com/10.1023/A:1013880415412
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N1e83eaad6f0e490ab3f717903ddaca86 schema:name doi
52 schema:value 10.1023/a:1013880415412
53 rdf:type schema:PropertyValue
54 N38e6184889e446439f4833f60e0d15a8 schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 N40d8e2df5814465889e86ff67a7f9f14 schema:volumeNumber 130
57 rdf:type schema:PublicationVolume
58 N7092c6f1f208465abe8b89e0a90dc577 schema:name readcube_id
59 schema:value d40a0d17fb1985bdff309364a09e5990dc4f08eaa1024542f9f2750394c85582
60 rdf:type schema:PropertyValue
61 N81d51bbbf52a44cfb590274bbf6bc025 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N94767781d5ea47a8aadb4dfbe901f853 schema:name dimensions_id
64 schema:value pub.1044514575
65 rdf:type schema:PropertyValue
66 Ncc0082b5b85942e78ab5ecf8b0f7b728 rdf:first sg:person.013233115763.52
67 rdf:rest rdf:nil
68 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
69 schema:name Physical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
72 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
73 rdf:type schema:DefinedTerm
74 sg:journal.1327888 schema:issn 0040-5779
75 2305-3135
76 schema:name Theoretical and Mathematical Physics
77 rdf:type schema:Periodical
78 sg:person.013233115763.52 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
79 schema:familyName Khalilov
80 schema:givenName V. R.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233115763.52
82 rdf:type schema:Person
83 sg:pub.10.1007/3-540-09246-3_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032785524
84 https://doi.org/10.1007/3-540-09246-3_2
85 rdf:type schema:CreativeWork
86 sg:pub.10.1023/a:1010320001946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015509107
87 https://doi.org/10.1023/a:1010320001946
88 rdf:type schema:CreativeWork
89 sg:pub.10.1038/16199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047387262
90 https://doi.org/10.1038/16199
91 rdf:type schema:CreativeWork
92 sg:pub.10.1038/282240a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041687869
93 https://doi.org/10.1038/282240a0
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/30410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019483518
96 https://doi.org/10.1038/30410
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0370-1573(94)90099-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010103804
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0370-2693(96)00430-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043075329
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1080/10556799308230566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004515013
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1086/170831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058502121
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1086/182617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058512128
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1086/186413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058515922
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1086/309010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058616529
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrev.100.463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060416817
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrev.115.254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060421905
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrev.173.1210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060439163
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevd.20.1795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060687431
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevd.51.1886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060702916
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevd.51.4591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060703021
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevd.60.033003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033208063
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.66.2701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802549
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevlett.78.2898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032811031
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevlett.81.3311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015219043
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.84.5261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019744850
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1142/s0217984996001309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062948617
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
137 schema:name Moscow State University, Moscow, Russia
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...