Tabu Search Heuristic for Point-Feature Cartographic Label Placement View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-03

AUTHORS

Missae Yamamoto, Gilberto Camara, Luiz Antonio Nogueira Lorena

ABSTRACT

The generation of better label placement configurations in maps is a problem that comes up in automated cartographic production. The objective of a good label placement is to display the geographic position of the features with their corresponding label in a clear and harmonious fashion, following accepted cartographic conventions. In this work, we have approached this problem from a combinatorial optimization point of view, and our research consisted of the evaluation of the tabu search (TS) heuristic applied to cartographic label placement. When compared, in real and random test cases, with techniques such as simulated annealing and genetic algorithm (GA), TS has proven to be an efficient choice, with the best performance in quality. We concluded that TS is a recommended method to solve cartographic label placement problem of point features, due to its simplicity, practicality, efficiency and good performance along with its ability to generate quality solutions in acceptable computational time. More... »

PAGES

77-90

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1013720231747

DOI

http://dx.doi.org/10.1023/a:1013720231747

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032925812


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute for Space Research", 
          "id": "https://www.grid.ac/institutes/grid.419222.e", 
          "name": [
            "Brazilian Institute of Space Research (INPE), SP, BR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamamoto", 
        "givenName": "Missae", 
        "id": "sg:person.010111137365.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010111137365.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Space Research", 
          "id": "https://www.grid.ac/institutes/grid.419222.e", 
          "name": [
            "Brazilian Institute of Space Research (INPE), SP, BR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Camara", 
        "givenName": "Gilberto", 
        "id": "sg:person.012450113021.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012450113021.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Space Research", 
          "id": "https://www.grid.ac/institutes/grid.419222.e", 
          "name": [
            "Brazilian Institute of Space Research (INPE), SP, BR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lorena", 
        "givenName": "Luiz Antonio Nogueira", 
        "id": "sg:person.013705300747.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705300747.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0097-8493(96)00008-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018244423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1559/152304082783948367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023233495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/212332.212334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028621212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-336156-1.50064-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034901284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/ijoc.1.3.190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064706391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/ijoc.2.1.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064707137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/ijoc.9.3.266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064707635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/inte.20.4.74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064709328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.38.5.752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064730153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3138/9258-63ql-3988-110h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070998900"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-03", 
    "datePublishedReg": "2002-03-01", 
    "description": "The generation of better label placement configurations in maps is a problem that comes up in automated cartographic production. The objective of a good label placement is to display the geographic position of the features with their corresponding label in a clear and harmonious fashion, following accepted cartographic conventions. In this work, we have approached this problem from a combinatorial optimization point of view, and our research consisted of the evaluation of the tabu search (TS) heuristic applied to cartographic label placement. When compared, in real and random test cases, with techniques such as simulated annealing and genetic algorithm (GA), TS has proven to be an efficient choice, with the best performance in quality. We concluded that TS is a recommended method to solve cartographic label placement problem of point features, due to its simplicity, practicality, efficiency and good performance along with its ability to generate quality solutions in acceptable computational time.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1013720231747", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043850", 
        "issn": [
          "1384-6175", 
          "1573-7624"
        ], 
        "name": "GeoInformatica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Tabu Search Heuristic for Point-Feature Cartographic Label Placement", 
    "pagination": "77-90", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9cdacd0d01c11618624e5282e2c9add7080e465f55aa25664a2f3573943ca960"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1013720231747"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032925812"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1013720231747", 
      "https://app.dimensions.ai/details/publication/pub.1032925812"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1013720231747"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1013720231747'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1013720231747'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1013720231747'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1013720231747'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1013720231747 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na980b26119234f5ea735ea3eb45f7cf7
4 schema:citation https://doi.org/10.1016/0097-8493(96)00008-8
5 https://doi.org/10.1016/b978-0-12-336156-1.50064-1
6 https://doi.org/10.1145/212332.212334
7 https://doi.org/10.1287/ijoc.1.3.190
8 https://doi.org/10.1287/ijoc.2.1.4
9 https://doi.org/10.1287/ijoc.9.3.266
10 https://doi.org/10.1287/inte.20.4.74
11 https://doi.org/10.1287/opre.38.5.752
12 https://doi.org/10.1559/152304082783948367
13 https://doi.org/10.3138/9258-63ql-3988-110h
14 schema:datePublished 2002-03
15 schema:datePublishedReg 2002-03-01
16 schema:description The generation of better label placement configurations in maps is a problem that comes up in automated cartographic production. The objective of a good label placement is to display the geographic position of the features with their corresponding label in a clear and harmonious fashion, following accepted cartographic conventions. In this work, we have approached this problem from a combinatorial optimization point of view, and our research consisted of the evaluation of the tabu search (TS) heuristic applied to cartographic label placement. When compared, in real and random test cases, with techniques such as simulated annealing and genetic algorithm (GA), TS has proven to be an efficient choice, with the best performance in quality. We concluded that TS is a recommended method to solve cartographic label placement problem of point features, due to its simplicity, practicality, efficiency and good performance along with its ability to generate quality solutions in acceptable computational time.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N1f558ba876d541e8b204fd6134cb5c9f
21 Nedccb6e013ca40da9b3ee30c87bcf0be
22 sg:journal.1043850
23 schema:name Tabu Search Heuristic for Point-Feature Cartographic Label Placement
24 schema:pagination 77-90
25 schema:productId N137eeacbb2c741f6ac192e35ac75d9f4
26 Na679391ccd054304a8e9880d1c8fdf87
27 Ndc58f292fd654670b2ebc49ba3de3a92
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032925812
29 https://doi.org/10.1023/a:1013720231747
30 schema:sdDatePublished 2019-04-10T19:06
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N1810b891ec774947b13bb9b9d494f934
33 schema:url http://link.springer.com/10.1023/A:1013720231747
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N137eeacbb2c741f6ac192e35ac75d9f4 schema:name dimensions_id
38 schema:value pub.1032925812
39 rdf:type schema:PropertyValue
40 N1810b891ec774947b13bb9b9d494f934 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N1f558ba876d541e8b204fd6134cb5c9f schema:issueNumber 1
43 rdf:type schema:PublicationIssue
44 N47d61225a07d4baea446b5367bbe4846 rdf:first sg:person.013705300747.26
45 rdf:rest rdf:nil
46 Na0bb209e38de41db99540088199b5ee3 rdf:first sg:person.012450113021.58
47 rdf:rest N47d61225a07d4baea446b5367bbe4846
48 Na679391ccd054304a8e9880d1c8fdf87 schema:name readcube_id
49 schema:value 9cdacd0d01c11618624e5282e2c9add7080e465f55aa25664a2f3573943ca960
50 rdf:type schema:PropertyValue
51 Na980b26119234f5ea735ea3eb45f7cf7 rdf:first sg:person.010111137365.52
52 rdf:rest Na0bb209e38de41db99540088199b5ee3
53 Ndc58f292fd654670b2ebc49ba3de3a92 schema:name doi
54 schema:value 10.1023/a:1013720231747
55 rdf:type schema:PropertyValue
56 Nedccb6e013ca40da9b3ee30c87bcf0be schema:volumeNumber 6
57 rdf:type schema:PublicationVolume
58 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
59 schema:name Information and Computing Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
62 schema:name Artificial Intelligence and Image Processing
63 rdf:type schema:DefinedTerm
64 sg:journal.1043850 schema:issn 1384-6175
65 1573-7624
66 schema:name GeoInformatica
67 rdf:type schema:Periodical
68 sg:person.010111137365.52 schema:affiliation https://www.grid.ac/institutes/grid.419222.e
69 schema:familyName Yamamoto
70 schema:givenName Missae
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010111137365.52
72 rdf:type schema:Person
73 sg:person.012450113021.58 schema:affiliation https://www.grid.ac/institutes/grid.419222.e
74 schema:familyName Camara
75 schema:givenName Gilberto
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012450113021.58
77 rdf:type schema:Person
78 sg:person.013705300747.26 schema:affiliation https://www.grid.ac/institutes/grid.419222.e
79 schema:familyName Lorena
80 schema:givenName Luiz Antonio Nogueira
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013705300747.26
82 rdf:type schema:Person
83 https://doi.org/10.1016/0097-8493(96)00008-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018244423
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/b978-0-12-336156-1.50064-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034901284
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1145/212332.212334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028621212
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1287/ijoc.1.3.190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064706391
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1287/ijoc.2.1.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064707137
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1287/ijoc.9.3.266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064707635
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1287/inte.20.4.74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064709328
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1287/opre.38.5.752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064730153
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1559/152304082783948367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023233495
100 rdf:type schema:CreativeWork
101 https://doi.org/10.3138/9258-63ql-3988-110h schema:sameAs https://app.dimensions.ai/details/publication/pub.1070998900
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.419222.e schema:alternateName National Institute for Space Research
104 schema:name Brazilian Institute of Space Research (INPE), SP, BR
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...