Metabolomics – the link between genotypes and phenotypes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-01

AUTHORS

Oliver Fiehn

ABSTRACT

Metabolites are the end products of cellular regulatory processes, and their levels can be regarded as the ultimate response of biological systems to genetic or environmental changes. In parallel to the terms `transcriptome' and `proteome', the set of metabolites synthesized by a biological system constitute its `metabolome'. Yet, unlike other functional genomics approaches, the unbiased simultaneous identification and quantification of plant metabolomes has been largely neglected. Until recently, most analyses were restricted to profiling selected classes of compounds, or to fingerprinting metabolic changes without sufficient analytical resolution to determine metabolite levels and identities individually. As a prerequisite for metabolomic analysis, careful consideration of the methods employed for tissue extraction, sample preparation, data acquisition, and data mining must be taken. In this review, the differences among metabolite target analysis, metabolite profiling, and metabolic fingerprinting are clarified, and terms are defined. Current approaches are examined, and potential applications are summarized with a special emphasis on data mining and mathematical modelling of metabolism. More... »

PAGES

155-171

References to SciGraph publications

  • 1999-08-01. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data in JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
  • 1995-10. Metabolic regulation: A control analytic perspective in JOURNAL OF BIOENERGETICS AND BIOMEMBRANES
  • 2000. Computer Simulation as A Tool for Studying Metabolism and Drug Design in TECHNOLOGICAL AND MEDICAL IMPLICATIONS OF METABOLIC CONTROL ANALYSIS
  • 2001-02. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data in NATURE BIOTECHNOLOGY
  • 2001-01. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations in NATURE BIOTECHNOLOGY
  • 2000-11. Transgenic plants as factories for biopharmaceuticals in NATURE BIOTECHNOLOGY
  • 2000-11. Metabolite profiling for plant functional genomics in NATURE BIOTECHNOLOGY
  • 2000-11. The small world of metabolism in NATURE BIOTECHNOLOGY
  • 2000-07. Error and attack tolerance of complex networks in NATURE
  • 2000. Snapshots of Systems in TECHNOLOGICAL AND MEDICAL IMPLICATIONS OF METABOLIC CONTROL ANALYSIS
  • 2000-03. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks in NATURE BIOTECHNOLOGY
  • 1991-05. Use of antioxidants in extraction of tannins from walnut plants in JOURNAL OF CHEMICAL ECOLOGY
  • 2000-03. From genome to cellular phenotype—a role for metabolic flux analysis? in NATURE BIOTECHNOLOGY
  • 2000-10. The large-scale organization of metabolic networks in NATURE
  • 1999. Metabolic Network Analysis in BIOANALYSIS AND BIOSENSORS FOR BIOPROCESS MONITORING
  • 2000-12. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana in NATURE
  • 1999-01. Computational aspects of expression data in JOURNAL OF MOLECULAR MEDICINE
  • 1999-07. Data analysis and integration: of steps and arrows in NATURE GENETICS
  • 2000-07. Explanatory Analysis of the Metabolome Using Genetic Programming of Simple, Interpretable Rules in GENETIC PROGRAMMING AND EVOLVABLE MACHINES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1013713905833

    DOI

    http://dx.doi.org/10.1023/a:1013713905833

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027843923

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/11860207


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Plant Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Arabidopsis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Spectroscopy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mass Spectrometry", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plant Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Plants", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max-Planck Institute of Molecular Plant Physiology, 14424, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.418390.7", 
              "name": [
                "Max-Planck Institute of Molecular Plant Physiology, 14424, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fiehn", 
            "givenName": "Oliver", 
            "id": "sg:person.0615142477.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615142477.79"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/81132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027467389", 
              "https://doi.org/10.1038/81132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010014314078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011725237", 
              "https://doi.org/10.1023/a:1010014314078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-4072-0_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049301803", 
              "https://doi.org/10.1007/978-94-011-4072-0_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48773-5_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007674297", 
              "https://doi.org/10.1007/3-540-48773-5_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02110188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042505754", 
              "https://doi.org/10.1007/bf02110188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35019019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008269744", 
              "https://doi.org/10.1038/35019019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/83496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011462196", 
              "https://doi.org/10.1038/83496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01395597", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023907477", 
              "https://doi.org/10.1007/bf01395597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/10265", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006253604", 
              "https://doi.org/10.1038/10265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35036627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051510804", 
              "https://doi.org/10.1038/35036627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/s1044-0305(99)00047-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042808879", 
              "https://doi.org/10.1016/s1044-0305(99)00047-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/81137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045090002", 
              "https://doi.org/10.1038/81137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/81025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029719932", 
              "https://doi.org/10.1038/81025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001090050290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002324275", 
              "https://doi.org/10.1007/s001090050290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/84379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015458337", 
              "https://doi.org/10.1038/84379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/73696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033824618", 
              "https://doi.org/10.1038/73696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35048692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044298669", 
              "https://doi.org/10.1038/35048692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/73786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021112891", 
              "https://doi.org/10.1038/73786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-4072-0_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003176614", 
              "https://doi.org/10.1007/978-94-011-4072-0_1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002-01", 
        "datePublishedReg": "2002-01-01", 
        "description": "Metabolites are the end products of cellular regulatory processes, and their levels can be regarded as the ultimate response of biological systems to genetic or environmental changes. In parallel to the terms `transcriptome' and `proteome', the set of metabolites synthesized by a biological system constitute its `metabolome'. Yet, unlike other functional genomics approaches, the unbiased simultaneous identification and quantification of plant metabolomes has been largely neglected. Until recently, most analyses were restricted to profiling selected classes of compounds, or to fingerprinting metabolic changes without sufficient analytical resolution to determine metabolite levels and identities individually. As a prerequisite for metabolomic analysis, careful consideration of the methods employed for tissue extraction, sample preparation, data acquisition, and data mining must be taken. In this review, the differences among metabolite target analysis, metabolite profiling, and metabolic fingerprinting are clarified, and terms are defined. Current approaches are examined, and potential applications are summarized with a special emphasis on data mining and mathematical modelling of metabolism.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1013713905833", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1101246", 
            "issn": [
              "0167-4412", 
              "1573-5028"
            ], 
            "name": "Plant Molecular Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "48"
          }
        ], 
        "keywords": [
          "functional genomics approach", 
          "metabolite target analysis", 
          "cellular regulatory processes", 
          "genomic approaches", 
          "plant metabolome", 
          "biological systems", 
          "set of metabolites", 
          "environmental changes", 
          "regulatory processes", 
          "transcriptome", 
          "metabolite profiling", 
          "metabolomic analysis", 
          "metabolic fingerprinting", 
          "metabolome", 
          "metabolic changes", 
          "target analysis", 
          "ultimate response", 
          "proteome", 
          "metabolite levels", 
          "metabolites", 
          "simultaneous identification", 
          "phenotype", 
          "end products", 
          "profiling", 
          "most analyses", 
          "tissue extraction", 
          "fingerprinting", 
          "metabolism", 
          "metabolomics", 
          "genotypes", 
          "class of compounds", 
          "identification", 
          "levels", 
          "analysis", 
          "sample preparation", 
          "analytical resolution", 
          "changes", 
          "identity", 
          "special emphasis", 
          "response", 
          "prerequisite", 
          "current approaches", 
          "compounds", 
          "potential applications", 
          "mathematical modelling", 
          "quantification", 
          "link", 
          "acquisition", 
          "products", 
          "mining", 
          "review", 
          "process", 
          "data mining", 
          "system", 
          "class", 
          "parallel", 
          "differences", 
          "approach", 
          "resolution", 
          "careful consideration", 
          "set", 
          "emphasis", 
          "preparation", 
          "extraction", 
          "applications", 
          "modelling", 
          "method", 
          "terms", 
          "consideration", 
          "data acquisition"
        ], 
        "name": "Metabolomics \u2013 the link between genotypes and phenotypes", 
        "pagination": "155-171", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027843923"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1013713905833"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "11860207"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1013713905833", 
          "https://app.dimensions.ai/details/publication/pub.1027843923"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_347.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1013713905833"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1013713905833'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1013713905833'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1013713905833'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1013713905833'


     

    This table displays all metadata directly associated to this object as RDF triples.

    247 TRIPLES      21 PREDICATES      125 URIs      96 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1013713905833 schema:about N529583c1e9a446b8b794358f2bf50bcb
    2 N78a61219ae524b569a2d7222f4a92e7b
    3 N7ce9dc808c3845ee9fb9b4f1f5e5d61a
    4 N891c3b8ac81e4ef89ee243b8c08fa617
    5 N989050e7aa5e4368af8709b18229f652
    6 Nb896e035c6fe4a1f93aa455255ef5411
    7 Nd728b65a3d6d46799444f69ec1e252e0
    8 Ne0f78251f751471db094aa5fcdc0cfc8
    9 anzsrc-for:06
    10 anzsrc-for:0601
    11 anzsrc-for:0604
    12 anzsrc-for:0607
    13 schema:author Nc071063dd91a47cb90adad3d7cfec01a
    14 schema:citation sg:pub.10.1007/3-540-48773-5_7
    15 sg:pub.10.1007/978-94-011-4072-0_1
    16 sg:pub.10.1007/978-94-011-4072-0_18
    17 sg:pub.10.1007/bf01395597
    18 sg:pub.10.1007/bf02110188
    19 sg:pub.10.1007/s001090050290
    20 sg:pub.10.1016/s1044-0305(99)00047-1
    21 sg:pub.10.1023/a:1010014314078
    22 sg:pub.10.1038/10265
    23 sg:pub.10.1038/35019019
    24 sg:pub.10.1038/35036627
    25 sg:pub.10.1038/35048692
    26 sg:pub.10.1038/73696
    27 sg:pub.10.1038/73786
    28 sg:pub.10.1038/81025
    29 sg:pub.10.1038/81132
    30 sg:pub.10.1038/81137
    31 sg:pub.10.1038/83496
    32 sg:pub.10.1038/84379
    33 schema:datePublished 2002-01
    34 schema:datePublishedReg 2002-01-01
    35 schema:description Metabolites are the end products of cellular regulatory processes, and their levels can be regarded as the ultimate response of biological systems to genetic or environmental changes. In parallel to the terms `transcriptome' and `proteome', the set of metabolites synthesized by a biological system constitute its `metabolome'. Yet, unlike other functional genomics approaches, the unbiased simultaneous identification and quantification of plant metabolomes has been largely neglected. Until recently, most analyses were restricted to profiling selected classes of compounds, or to fingerprinting metabolic changes without sufficient analytical resolution to determine metabolite levels and identities individually. As a prerequisite for metabolomic analysis, careful consideration of the methods employed for tissue extraction, sample preparation, data acquisition, and data mining must be taken. In this review, the differences among metabolite target analysis, metabolite profiling, and metabolic fingerprinting are clarified, and terms are defined. Current approaches are examined, and potential applications are summarized with a special emphasis on data mining and mathematical modelling of metabolism.
    36 schema:genre article
    37 schema:isAccessibleForFree false
    38 schema:isPartOf N130cf5c3ac1f4c38afcac4d42af67aa4
    39 N2c0e4134d80b4e88bda5ba6ff86cbfee
    40 sg:journal.1101246
    41 schema:keywords acquisition
    42 analysis
    43 analytical resolution
    44 applications
    45 approach
    46 biological systems
    47 careful consideration
    48 cellular regulatory processes
    49 changes
    50 class
    51 class of compounds
    52 compounds
    53 consideration
    54 current approaches
    55 data acquisition
    56 data mining
    57 differences
    58 emphasis
    59 end products
    60 environmental changes
    61 extraction
    62 fingerprinting
    63 functional genomics approach
    64 genomic approaches
    65 genotypes
    66 identification
    67 identity
    68 levels
    69 link
    70 mathematical modelling
    71 metabolic changes
    72 metabolic fingerprinting
    73 metabolism
    74 metabolite levels
    75 metabolite profiling
    76 metabolite target analysis
    77 metabolites
    78 metabolome
    79 metabolomic analysis
    80 metabolomics
    81 method
    82 mining
    83 modelling
    84 most analyses
    85 parallel
    86 phenotype
    87 plant metabolome
    88 potential applications
    89 preparation
    90 prerequisite
    91 process
    92 products
    93 profiling
    94 proteome
    95 quantification
    96 regulatory processes
    97 resolution
    98 response
    99 review
    100 sample preparation
    101 set
    102 set of metabolites
    103 simultaneous identification
    104 special emphasis
    105 system
    106 target analysis
    107 terms
    108 tissue extraction
    109 transcriptome
    110 ultimate response
    111 schema:name Metabolomics – the link between genotypes and phenotypes
    112 schema:pagination 155-171
    113 schema:productId N139292bb648e497ab7d4d5ae3fa4c8d1
    114 N91ebd2ddee664e308439fbf678c25e56
    115 N94c01b59a06e4d3d99b49f6d5bf7cac0
    116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027843923
    117 https://doi.org/10.1023/a:1013713905833
    118 schema:sdDatePublished 2022-11-24T20:50
    119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    120 schema:sdPublisher N630bbe94dd0b4ca1958f16ba237e8e48
    121 schema:url https://doi.org/10.1023/a:1013713905833
    122 sgo:license sg:explorer/license/
    123 sgo:sdDataset articles
    124 rdf:type schema:ScholarlyArticle
    125 N130cf5c3ac1f4c38afcac4d42af67aa4 schema:issueNumber 1-2
    126 rdf:type schema:PublicationIssue
    127 N139292bb648e497ab7d4d5ae3fa4c8d1 schema:name dimensions_id
    128 schema:value pub.1027843923
    129 rdf:type schema:PropertyValue
    130 N2c0e4134d80b4e88bda5ba6ff86cbfee schema:volumeNumber 48
    131 rdf:type schema:PublicationVolume
    132 N529583c1e9a446b8b794358f2bf50bcb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Phenotype
    134 rdf:type schema:DefinedTerm
    135 N630bbe94dd0b4ca1958f16ba237e8e48 schema:name Springer Nature - SN SciGraph project
    136 rdf:type schema:Organization
    137 N78a61219ae524b569a2d7222f4a92e7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Arabidopsis
    139 rdf:type schema:DefinedTerm
    140 N7ce9dc808c3845ee9fb9b4f1f5e5d61a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Magnetic Resonance Spectroscopy
    142 rdf:type schema:DefinedTerm
    143 N891c3b8ac81e4ef89ee243b8c08fa617 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Plants
    145 rdf:type schema:DefinedTerm
    146 N91ebd2ddee664e308439fbf678c25e56 schema:name pubmed_id
    147 schema:value 11860207
    148 rdf:type schema:PropertyValue
    149 N94c01b59a06e4d3d99b49f6d5bf7cac0 schema:name doi
    150 schema:value 10.1023/a:1013713905833
    151 rdf:type schema:PropertyValue
    152 N989050e7aa5e4368af8709b18229f652 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Mass Spectrometry
    154 rdf:type schema:DefinedTerm
    155 Nb896e035c6fe4a1f93aa455255ef5411 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Models, Biological
    157 rdf:type schema:DefinedTerm
    158 Nc071063dd91a47cb90adad3d7cfec01a rdf:first sg:person.0615142477.79
    159 rdf:rest rdf:nil
    160 Nd728b65a3d6d46799444f69ec1e252e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Plant Proteins
    162 rdf:type schema:DefinedTerm
    163 Ne0f78251f751471db094aa5fcdc0cfc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Genotype
    165 rdf:type schema:DefinedTerm
    166 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    167 schema:name Biological Sciences
    168 rdf:type schema:DefinedTerm
    169 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    170 schema:name Biochemistry and Cell Biology
    171 rdf:type schema:DefinedTerm
    172 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    173 schema:name Genetics
    174 rdf:type schema:DefinedTerm
    175 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
    176 schema:name Plant Biology
    177 rdf:type schema:DefinedTerm
    178 sg:journal.1101246 schema:issn 0167-4412
    179 1573-5028
    180 schema:name Plant Molecular Biology
    181 schema:publisher Springer Nature
    182 rdf:type schema:Periodical
    183 sg:person.0615142477.79 schema:affiliation grid-institutes:grid.418390.7
    184 schema:familyName Fiehn
    185 schema:givenName Oliver
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615142477.79
    187 rdf:type schema:Person
    188 sg:pub.10.1007/3-540-48773-5_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007674297
    189 https://doi.org/10.1007/3-540-48773-5_7
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/978-94-011-4072-0_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003176614
    192 https://doi.org/10.1007/978-94-011-4072-0_1
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/978-94-011-4072-0_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049301803
    195 https://doi.org/10.1007/978-94-011-4072-0_18
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/bf01395597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023907477
    198 https://doi.org/10.1007/bf01395597
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/bf02110188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042505754
    201 https://doi.org/10.1007/bf02110188
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s001090050290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002324275
    204 https://doi.org/10.1007/s001090050290
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1016/s1044-0305(99)00047-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042808879
    207 https://doi.org/10.1016/s1044-0305(99)00047-1
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1023/a:1010014314078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011725237
    210 https://doi.org/10.1023/a:1010014314078
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/10265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006253604
    213 https://doi.org/10.1038/10265
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/35019019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008269744
    216 https://doi.org/10.1038/35019019
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/35036627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051510804
    219 https://doi.org/10.1038/35036627
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/35048692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044298669
    222 https://doi.org/10.1038/35048692
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/73696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033824618
    225 https://doi.org/10.1038/73696
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/73786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021112891
    228 https://doi.org/10.1038/73786
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/81025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029719932
    231 https://doi.org/10.1038/81025
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/81132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027467389
    234 https://doi.org/10.1038/81132
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/81137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045090002
    237 https://doi.org/10.1038/81137
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/83496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011462196
    240 https://doi.org/10.1038/83496
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/84379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015458337
    243 https://doi.org/10.1038/84379
    244 rdf:type schema:CreativeWork
    245 grid-institutes:grid.418390.7 schema:alternateName Max-Planck Institute of Molecular Plant Physiology, 14424, Potsdam, Germany
    246 schema:name Max-Planck Institute of Molecular Plant Physiology, 14424, Potsdam, Germany
    247 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...