Equation of State for Nonpolar Fluid Mixtures: Prediction from Boiling Point Constants View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-11

AUTHORS

H. Eslami

ABSTRACT

Our previous corresponding-states correlation for the second virial coefficient of nonpolar fluids, based on the normal boiling point parameters, has been employed to predict the equation of state of nonpolar fluid mixtures. The analytical equation of state is that of Ihm, Song, and Mason, which requires three temperature-dependent parameters, i.e., the second virial coefficient, a scaling constant for softness of repulsive forces, and a van der Waals covolume. In the previous work, we showed that the temperature-dependent parameters could be calculated by knowing the boiling point constants. In this work, it is shown that using a simple geometric mean for the boiling point temperature and an arithmetic mean for the liquid density at the normal boiling point is sufficient to determine the temperature-dependent parameters for mixtures. The equation of state has been utilized to calculate the liquid density of several nonpolar fluid mixtures. The agreement with experiment is good. More... »

PAGES

1781-1793

References to SciGraph publications

  • 1992-11. Equation of state for mixtures of nonpolar fluids: Prediction from experimental constants of the components in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 1996-07. Equation of state for compressed liquids from surface tension in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 1991-09. Sound velocity of equimolar dense noble-gas mixtures in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 1993-07. Equation of state for compressed liquids and their mixtures from the cohesive energy density in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 1999-03. Equation of State for Complex Liquid Mixtures from Surface Tension in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • 2000-09. Equation of State for Nonpolar Fluids: Prediction from Boiling Point Constants in INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1013195118132

    DOI

    http://dx.doi.org/10.1023/a:1013195118132

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053186106


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Persian Gulf University", 
              "id": "https://www.grid.ac/institutes/grid.412491.b", 
              "name": [
                "Department of Chemistry, College of Sciences, Persian Gulf University, 75168, Boushehr, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eslami", 
            "givenName": "H.", 
            "id": "sg:person.0700465067.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700465067.86"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00502102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001009435", 
              "https://doi.org/10.1007/bf00502102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00502102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001009435", 
              "https://doi.org/10.1007/bf00502102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-3812(96)03224-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005646266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026498021221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015353054", 
              "https://doi.org/10.1023/a:1026498021221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00502418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017975064", 
              "https://doi.org/10.1007/bf00502418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00502418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017975064", 
              "https://doi.org/10.1007/bf00502418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022613306307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020883916", 
              "https://doi.org/10.1023/a:1022613306307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00268979000101671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030899451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-3812(99)00281-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031393201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-3812(89)80032-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031533590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01439197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032884572", 
              "https://doi.org/10.1007/bf01439197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01439197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032884572", 
              "https://doi.org/10.1007/bf01439197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01141215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036660893", 
              "https://doi.org/10.1007/bf01141215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01141215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036660893", 
              "https://doi.org/10.1007/bf01141215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00268979200100681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040726390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/aic.690280420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049097441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-3812(92)87010-k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049520457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-9614(77)90173-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053657516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j100206a047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055659250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j100400a030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055669101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j100870a021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055683659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja01567a007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055808167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/je00001a026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055876868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/je00060a030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055879567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/je950279c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055890320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/je950279c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055890320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/je9602327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055890555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/je9602327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055890555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1674820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057751279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1701689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057772042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.457252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058035264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.457965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058035977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.459517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058037528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.460684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058038695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.466051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058044057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1246/bcsj.67.1213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064473272"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-11", 
        "datePublishedReg": "2001-11-01", 
        "description": "Our previous corresponding-states correlation for the second virial coefficient of nonpolar fluids, based on the normal boiling point parameters, has been employed to predict the equation of state of nonpolar fluid mixtures. The analytical equation of state is that of Ihm, Song, and Mason, which requires three temperature-dependent parameters, i.e., the second virial coefficient, a scaling constant for softness of repulsive forces, and a van der Waals covolume. In the previous work, we showed that the temperature-dependent parameters could be calculated by knowing the boiling point constants. In this work, it is shown that using a simple geometric mean for the boiling point temperature and an arithmetic mean for the liquid density at the normal boiling point is sufficient to determine the temperature-dependent parameters for mixtures. The equation of state has been utilized to calculate the liquid density of several nonpolar fluid mixtures. The agreement with experiment is good.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1013195118132", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043587", 
            "issn": [
              "0195-928X", 
              "1572-9567"
            ], 
            "name": "International Journal of Thermophysics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "name": "Equation of State for Nonpolar Fluid Mixtures: Prediction from Boiling Point Constants", 
        "pagination": "1781-1793", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fd5627ce1999eda1754f941ed71504d14a72a0bc49545dc6afd7ca952e233a45"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1013195118132"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053186106"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1013195118132", 
          "https://app.dimensions.ai/details/publication/pub.1053186106"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000501.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023/A:1013195118132"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1013195118132'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1013195118132'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1013195118132'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1013195118132'


     

    This table displays all metadata directly associated to this object as RDF triples.

    157 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1013195118132 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N12b9f02e5d9c4187a6491a7ea0c9ca71
    4 schema:citation sg:pub.10.1007/bf00502102
    5 sg:pub.10.1007/bf00502418
    6 sg:pub.10.1007/bf01141215
    7 sg:pub.10.1007/bf01439197
    8 sg:pub.10.1023/a:1022613306307
    9 sg:pub.10.1023/a:1026498021221
    10 https://doi.org/10.1002/aic.690280420
    11 https://doi.org/10.1016/0021-9614(77)90173-2
    12 https://doi.org/10.1016/0378-3812(89)80032-9
    13 https://doi.org/10.1016/0378-3812(92)87010-k
    14 https://doi.org/10.1016/s0378-3812(96)03224-4
    15 https://doi.org/10.1016/s0378-3812(99)00281-2
    16 https://doi.org/10.1021/j100206a047
    17 https://doi.org/10.1021/j100400a030
    18 https://doi.org/10.1021/j100870a021
    19 https://doi.org/10.1021/ja01567a007
    20 https://doi.org/10.1021/je00001a026
    21 https://doi.org/10.1021/je00060a030
    22 https://doi.org/10.1021/je950279c
    23 https://doi.org/10.1021/je9602327
    24 https://doi.org/10.1063/1.1674820
    25 https://doi.org/10.1063/1.1701689
    26 https://doi.org/10.1063/1.457252
    27 https://doi.org/10.1063/1.457965
    28 https://doi.org/10.1063/1.459517
    29 https://doi.org/10.1063/1.460684
    30 https://doi.org/10.1063/1.466051
    31 https://doi.org/10.1080/00268979000101671
    32 https://doi.org/10.1080/00268979200100681
    33 https://doi.org/10.1246/bcsj.67.1213
    34 schema:datePublished 2001-11
    35 schema:datePublishedReg 2001-11-01
    36 schema:description Our previous corresponding-states correlation for the second virial coefficient of nonpolar fluids, based on the normal boiling point parameters, has been employed to predict the equation of state of nonpolar fluid mixtures. The analytical equation of state is that of Ihm, Song, and Mason, which requires three temperature-dependent parameters, i.e., the second virial coefficient, a scaling constant for softness of repulsive forces, and a van der Waals covolume. In the previous work, we showed that the temperature-dependent parameters could be calculated by knowing the boiling point constants. In this work, it is shown that using a simple geometric mean for the boiling point temperature and an arithmetic mean for the liquid density at the normal boiling point is sufficient to determine the temperature-dependent parameters for mixtures. The equation of state has been utilized to calculate the liquid density of several nonpolar fluid mixtures. The agreement with experiment is good.
    37 schema:genre research_article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree false
    40 schema:isPartOf N2710733150af43a397a0a62a13d35c3c
    41 Nd6d15f2e842b4c9d865281c7b7159d89
    42 sg:journal.1043587
    43 schema:name Equation of State for Nonpolar Fluid Mixtures: Prediction from Boiling Point Constants
    44 schema:pagination 1781-1793
    45 schema:productId N101eec0735a34194a406a7ae6f9aa5b7
    46 N242c08f3a1304dffb0a36b7a446a1117
    47 Nbe2bdf334e524c24aeffe2c59e5e435a
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053186106
    49 https://doi.org/10.1023/a:1013195118132
    50 schema:sdDatePublished 2019-04-10T22:29
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher Nfac9e21169794230bb250f8dff51f61c
    53 schema:url http://link.springer.com/10.1023/A:1013195118132
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N101eec0735a34194a406a7ae6f9aa5b7 schema:name doi
    58 schema:value 10.1023/a:1013195118132
    59 rdf:type schema:PropertyValue
    60 N12b9f02e5d9c4187a6491a7ea0c9ca71 rdf:first sg:person.0700465067.86
    61 rdf:rest rdf:nil
    62 N242c08f3a1304dffb0a36b7a446a1117 schema:name dimensions_id
    63 schema:value pub.1053186106
    64 rdf:type schema:PropertyValue
    65 N2710733150af43a397a0a62a13d35c3c schema:issueNumber 6
    66 rdf:type schema:PublicationIssue
    67 Nbe2bdf334e524c24aeffe2c59e5e435a schema:name readcube_id
    68 schema:value fd5627ce1999eda1754f941ed71504d14a72a0bc49545dc6afd7ca952e233a45
    69 rdf:type schema:PropertyValue
    70 Nd6d15f2e842b4c9d865281c7b7159d89 schema:volumeNumber 22
    71 rdf:type schema:PublicationVolume
    72 Nfac9e21169794230bb250f8dff51f61c schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Chemical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Physical Chemistry (incl. Structural)
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1043587 schema:issn 0195-928X
    81 1572-9567
    82 schema:name International Journal of Thermophysics
    83 rdf:type schema:Periodical
    84 sg:person.0700465067.86 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
    85 schema:familyName Eslami
    86 schema:givenName H.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700465067.86
    88 rdf:type schema:Person
    89 sg:pub.10.1007/bf00502102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001009435
    90 https://doi.org/10.1007/bf00502102
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf00502418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017975064
    93 https://doi.org/10.1007/bf00502418
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/bf01141215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036660893
    96 https://doi.org/10.1007/bf01141215
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/bf01439197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032884572
    99 https://doi.org/10.1007/bf01439197
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1023/a:1022613306307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020883916
    102 https://doi.org/10.1023/a:1022613306307
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1023/a:1026498021221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015353054
    105 https://doi.org/10.1023/a:1026498021221
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1002/aic.690280420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049097441
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/0021-9614(77)90173-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053657516
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/0378-3812(89)80032-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031533590
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/0378-3812(92)87010-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1049520457
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/s0378-3812(96)03224-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005646266
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/s0378-3812(99)00281-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031393201
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1021/j100206a047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055659250
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1021/j100400a030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055669101
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1021/j100870a021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055683659
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1021/ja01567a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055808167
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1021/je00001a026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055876868
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1021/je00060a030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055879567
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1021/je950279c schema:sameAs https://app.dimensions.ai/details/publication/pub.1055890320
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1021/je9602327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055890555
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1063/1.1674820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057751279
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1063/1.1701689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057772042
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1063/1.457252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058035264
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1063/1.457965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058035977
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1063/1.459517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058037528
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1063/1.460684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058038695
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1063/1.466051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058044057
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1080/00268979000101671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030899451
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1080/00268979200100681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040726390
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1246/bcsj.67.1213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064473272
    154 rdf:type schema:CreativeWork
    155 https://www.grid.ac/institutes/grid.412491.b schema:alternateName Persian Gulf University
    156 schema:name Department of Chemistry, College of Sciences, Persian Gulf University, 75168, Boushehr, Iran
    157 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...