Ontology type: schema:ScholarlyArticle
2001-11
AUTHORS ABSTRACTOur previous corresponding-states correlation for the second virial coefficient of nonpolar fluids, based on the normal boiling point parameters, has been employed to predict the equation of state of nonpolar fluid mixtures. The analytical equation of state is that of Ihm, Song, and Mason, which requires three temperature-dependent parameters, i.e., the second virial coefficient, a scaling constant for softness of repulsive forces, and a van der Waals covolume. In the previous work, we showed that the temperature-dependent parameters could be calculated by knowing the boiling point constants. In this work, it is shown that using a simple geometric mean for the boiling point temperature and an arithmetic mean for the liquid density at the normal boiling point is sufficient to determine the temperature-dependent parameters for mixtures. The equation of state has been utilized to calculate the liquid density of several nonpolar fluid mixtures. The agreement with experiment is good. More... »
PAGES1781-1793
http://scigraph.springernature.com/pub.10.1023/a:1013195118132
DOIhttp://dx.doi.org/10.1023/a:1013195118132
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1053186106
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Persian Gulf University",
"id": "https://www.grid.ac/institutes/grid.412491.b",
"name": [
"Department of Chemistry, College of Sciences, Persian Gulf University, 75168, Boushehr, Iran"
],
"type": "Organization"
},
"familyName": "Eslami",
"givenName": "H.",
"id": "sg:person.0700465067.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700465067.86"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00502102",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001009435",
"https://doi.org/10.1007/bf00502102"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00502102",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001009435",
"https://doi.org/10.1007/bf00502102"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0378-3812(96)03224-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005646266"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1026498021221",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015353054",
"https://doi.org/10.1023/a:1026498021221"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00502418",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017975064",
"https://doi.org/10.1007/bf00502418"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00502418",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017975064",
"https://doi.org/10.1007/bf00502418"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1022613306307",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020883916",
"https://doi.org/10.1023/a:1022613306307"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/00268979000101671",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030899451"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0378-3812(99)00281-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031393201"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0378-3812(89)80032-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031533590"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01439197",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032884572",
"https://doi.org/10.1007/bf01439197"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01439197",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032884572",
"https://doi.org/10.1007/bf01439197"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01141215",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036660893",
"https://doi.org/10.1007/bf01141215"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01141215",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036660893",
"https://doi.org/10.1007/bf01141215"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/00268979200100681",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040726390"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/aic.690280420",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049097441"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0378-3812(92)87010-k",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049520457"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0021-9614(77)90173-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053657516"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/j100206a047",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055659250"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/j100400a030",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055669101"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/j100870a021",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055683659"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/ja01567a007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055808167"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/je00001a026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055876868"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/je00060a030",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055879567"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/je950279c",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055890320"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/je950279c",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055890320"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/je9602327",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055890555"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/je9602327",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055890555"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1674820",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057751279"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1701689",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057772042"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.457252",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058035264"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.457965",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058035977"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.459517",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058037528"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.460684",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058038695"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.466051",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058044057"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1246/bcsj.67.1213",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064473272"
],
"type": "CreativeWork"
}
],
"datePublished": "2001-11",
"datePublishedReg": "2001-11-01",
"description": "Our previous corresponding-states correlation for the second virial coefficient of nonpolar fluids, based on the normal boiling point parameters, has been employed to predict the equation of state of nonpolar fluid mixtures. The analytical equation of state is that of Ihm, Song, and Mason, which requires three temperature-dependent parameters, i.e., the second virial coefficient, a scaling constant for softness of repulsive forces, and a van der Waals covolume. In the previous work, we showed that the temperature-dependent parameters could be calculated by knowing the boiling point constants. In this work, it is shown that using a simple geometric mean for the boiling point temperature and an arithmetic mean for the liquid density at the normal boiling point is sufficient to determine the temperature-dependent parameters for mixtures. The equation of state has been utilized to calculate the liquid density of several nonpolar fluid mixtures. The agreement with experiment is good.",
"genre": "research_article",
"id": "sg:pub.10.1023/a:1013195118132",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1043587",
"issn": [
"0195-928X",
"1572-9567"
],
"name": "International Journal of Thermophysics",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "22"
}
],
"name": "Equation of State for Nonpolar Fluid Mixtures: Prediction from Boiling Point Constants",
"pagination": "1781-1793",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"fd5627ce1999eda1754f941ed71504d14a72a0bc49545dc6afd7ca952e233a45"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/a:1013195118132"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1053186106"
]
}
],
"sameAs": [
"https://doi.org/10.1023/a:1013195118132",
"https://app.dimensions.ai/details/publication/pub.1053186106"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T22:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000501.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1023/A:1013195118132"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1013195118132'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1013195118132'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1013195118132'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1013195118132'
This table displays all metadata directly associated to this object as RDF triples.
157 TRIPLES
21 PREDICATES
57 URIs
19 LITERALS
7 BLANK NODES