A Dynamical Approach to Protein Folding View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-06

AUTHORS

A. Torcini, R. Livi, A. Politi

ABSTRACT

In this paper we show that a dynamical description of the protein folding process provides an effective representation of equilibrium properties and it allows for a direct investigation of the mechanisms ruling the approach towards the native configuration. The results reported in this paper have been obtained fora two-dimensional toy-model of aminoacid sequences, whosenative configurations were previously determined byMonte Carlo techniques.The somewhat controversial scenario emerging from the comparison among different thermodynamical indicators is definitely better resolved with the help of a truly dynamical description. In particular,we are able to identify the metastable states visited during the folding process by monitoring the temporal evolution of the `long-range' potentialenergy. Moreover, the resulting dynamical scenario is consistent with the picture arising from a reconstruction of the energy landscape in the vicinity of the global minimum. This suggests that the introduction of efficient `static' indicators too should properly account for the complex `orography' of the landscape. More... »

PAGES

181-203

References to SciGraph publications

  • 1994-05. How does a protein fold? in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1013104123892

    DOI

    http://dx.doi.org/10.1023/a:1013104123892

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028995985

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23345743


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Istituto Nazionale Per La Fisica Della Materia", 
              "id": "https://www.grid.ac/institutes/grid.157869.4", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e1 `La Sapienza', P.zle A. Moro, 2, I-00185, Roma, Italy", 
                "INFM, UdR Firenze, L.go E. Fermi, 2, I-50125, Firenze, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Torcini", 
            "givenName": "A.", 
            "id": "sg:person.01107125122.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107125122.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sapienza University of Rome", 
              "id": "https://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "INFM, UdR Firenze, L.go E. Fermi, 2, I-50125, Firenze, Italy", 
                "Dipartimento di Fisica, Universit\u00e1 `La Sapienza', P.zle A. Moro, 2, I-00185, Roma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Livi", 
            "givenName": "R.", 
            "id": "sg:person.0772676522.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772676522.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istituto Nazionale di Ottica", 
              "id": "https://www.grid.ac/institutes/grid.425378.f", 
              "name": [
                "INFM, UdR Firenze, L.go E. Fermi, 2, I-50125, Firenze, Italy", 
                "Istituto Nazionale di Ottica Applicata, L.go E. Fermi, 6, I-50125, Firenze, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Politi", 
            "givenName": "A.", 
            "id": "sg:person.013264105675.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.76.4070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001592841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.76.4070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001592841"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.92.8.3626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004973137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.467775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011935626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1359-0278(97)00002-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013907111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0134(19990215)34:3<269::aid-prot1>3.0.co;2-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015070910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/369248a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018450480", 
              "https://doi.org/10.1038/369248a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.55.860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021855680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.55.860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021855680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.469931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022694378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.59.2746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025634743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.59.2746", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025634743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.90.13.6369", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035861468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1996.0704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036979215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/epl/i2000-00128-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042026828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/24/22/019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059071922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.48.1469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060715589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.48.1469", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060715589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.52.2361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060718316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.52.2361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060718316"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.72.3907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060809221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.72.3907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060809221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1853201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062510404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.225.4666.983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062529173"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-06", 
        "datePublishedReg": "2001-06-01", 
        "description": "In this paper we show that a dynamical description of the protein folding process provides an effective representation of equilibrium properties and it allows for a direct investigation of the mechanisms ruling the approach towards the native configuration. The results reported in this paper have been obtained fora two-dimensional toy-model of aminoacid sequences, whosenative configurations were previously determined byMonte Carlo techniques.The somewhat controversial scenario emerging from the comparison among different thermodynamical indicators is definitely better resolved with the help of a truly dynamical description. In particular,we are able to identify the metastable states visited during the folding process by monitoring the temporal evolution of the `long-range' potentialenergy. Moreover, the resulting dynamical scenario is consistent with the picture arising from a reconstruction of the energy landscape in the vicinity of the global minimum. This suggests that the introduction of efficient `static' indicators too should properly account for the complex `orography' of the landscape.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1013104123892", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1019702", 
            "issn": [
              "0092-0606", 
              "1573-0689"
            ], 
            "name": "Journal of Biological Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2-3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "name": "A Dynamical Approach to Protein Folding", 
        "pagination": "181-203", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8a218c16e80043d5fad8aa2f0964c3e9ab0b71d3639948e877b314aee0b5b7ac"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23345743"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0417731"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1013104123892"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028995985"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1013104123892", 
          "https://app.dimensions.ai/details/publication/pub.1028995985"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000500.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023/A:1013104123892"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1013104123892'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1013104123892'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1013104123892'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1013104123892'


     

    This table displays all metadata directly associated to this object as RDF triples.

    147 TRIPLES      21 PREDICATES      47 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1013104123892 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N2958f471e0cf4467903e25d0a9d70643
    4 schema:citation sg:pub.10.1038/369248a0
    5 https://doi.org/10.1002/(sici)1097-0134(19990215)34:3<269::aid-prot1>3.0.co;2-3
    6 https://doi.org/10.1006/jmbi.1996.0704
    7 https://doi.org/10.1016/s1359-0278(97)00002-3
    8 https://doi.org/10.1063/1.467775
    9 https://doi.org/10.1063/1.469931
    10 https://doi.org/10.1073/pnas.90.13.6369
    11 https://doi.org/10.1073/pnas.92.8.3626
    12 https://doi.org/10.1088/0305-4470/24/22/019
    13 https://doi.org/10.1103/physreve.48.1469
    14 https://doi.org/10.1103/physreve.52.2361
    15 https://doi.org/10.1103/physreve.55.860
    16 https://doi.org/10.1103/physreve.59.2746
    17 https://doi.org/10.1103/physrevlett.72.3907
    18 https://doi.org/10.1103/physrevlett.76.4070
    19 https://doi.org/10.1126/science.1853201
    20 https://doi.org/10.1126/science.225.4666.983
    21 https://doi.org/10.1209/epl/i2000-00128-3
    22 schema:datePublished 2001-06
    23 schema:datePublishedReg 2001-06-01
    24 schema:description In this paper we show that a dynamical description of the protein folding process provides an effective representation of equilibrium properties and it allows for a direct investigation of the mechanisms ruling the approach towards the native configuration. The results reported in this paper have been obtained fora two-dimensional toy-model of aminoacid sequences, whosenative configurations were previously determined byMonte Carlo techniques.The somewhat controversial scenario emerging from the comparison among different thermodynamical indicators is definitely better resolved with the help of a truly dynamical description. In particular,we are able to identify the metastable states visited during the folding process by monitoring the temporal evolution of the `long-range' potentialenergy. Moreover, the resulting dynamical scenario is consistent with the picture arising from a reconstruction of the energy landscape in the vicinity of the global minimum. This suggests that the introduction of efficient `static' indicators too should properly account for the complex `orography' of the landscape.
    25 schema:genre research_article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N19e4bf9130924501a8dd29522bc4cf7f
    29 Nac02beefee1d42b4999991409b867e3d
    30 sg:journal.1019702
    31 schema:name A Dynamical Approach to Protein Folding
    32 schema:pagination 181-203
    33 schema:productId N03a6d114913a40b1a221d08d126d7de8
    34 N07f59b99604f4fd3977f79547099b3fa
    35 N7cbfdf4b25f74d3b993ce3eb2cb8ef11
    36 Na1d91fedac8a45f6abd3aab5a9ad5cbe
    37 Na9108c36d8334a3eb3e635f7f2ea6a28
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028995985
    39 https://doi.org/10.1023/a:1013104123892
    40 schema:sdDatePublished 2019-04-10T18:17
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher N94e504c396d34ae6b103038d2adddc1e
    43 schema:url http://link.springer.com/10.1023/A:1013104123892
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N03a6d114913a40b1a221d08d126d7de8 schema:name dimensions_id
    48 schema:value pub.1028995985
    49 rdf:type schema:PropertyValue
    50 N07f59b99604f4fd3977f79547099b3fa schema:name pubmed_id
    51 schema:value 23345743
    52 rdf:type schema:PropertyValue
    53 N19e4bf9130924501a8dd29522bc4cf7f schema:volumeNumber 27
    54 rdf:type schema:PublicationVolume
    55 N21113142a4264236b2f3a571ed02f70d rdf:first sg:person.013264105675.78
    56 rdf:rest rdf:nil
    57 N2958f471e0cf4467903e25d0a9d70643 rdf:first sg:person.01107125122.88
    58 rdf:rest Nba3bccde08a44d8ea5ae0d1a8efe9269
    59 N7cbfdf4b25f74d3b993ce3eb2cb8ef11 schema:name nlm_unique_id
    60 schema:value 0417731
    61 rdf:type schema:PropertyValue
    62 N94e504c396d34ae6b103038d2adddc1e schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 Na1d91fedac8a45f6abd3aab5a9ad5cbe schema:name doi
    65 schema:value 10.1023/a:1013104123892
    66 rdf:type schema:PropertyValue
    67 Na9108c36d8334a3eb3e635f7f2ea6a28 schema:name readcube_id
    68 schema:value 8a218c16e80043d5fad8aa2f0964c3e9ab0b71d3639948e877b314aee0b5b7ac
    69 rdf:type schema:PropertyValue
    70 Nac02beefee1d42b4999991409b867e3d schema:issueNumber 2-3
    71 rdf:type schema:PublicationIssue
    72 Nba3bccde08a44d8ea5ae0d1a8efe9269 rdf:first sg:person.0772676522.84
    73 rdf:rest N21113142a4264236b2f3a571ed02f70d
    74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Mathematical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Applied Mathematics
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1019702 schema:issn 0092-0606
    81 1573-0689
    82 schema:name Journal of Biological Physics
    83 rdf:type schema:Periodical
    84 sg:person.01107125122.88 schema:affiliation https://www.grid.ac/institutes/grid.157869.4
    85 schema:familyName Torcini
    86 schema:givenName A.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107125122.88
    88 rdf:type schema:Person
    89 sg:person.013264105675.78 schema:affiliation https://www.grid.ac/institutes/grid.425378.f
    90 schema:familyName Politi
    91 schema:givenName A.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264105675.78
    93 rdf:type schema:Person
    94 sg:person.0772676522.84 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
    95 schema:familyName Livi
    96 schema:givenName R.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772676522.84
    98 rdf:type schema:Person
    99 sg:pub.10.1038/369248a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018450480
    100 https://doi.org/10.1038/369248a0
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1002/(sici)1097-0134(19990215)34:3<269::aid-prot1>3.0.co;2-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015070910
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1006/jmbi.1996.0704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036979215
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/s1359-0278(97)00002-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013907111
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1063/1.467775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011935626
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1063/1.469931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022694378
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1073/pnas.90.13.6369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035861468
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1073/pnas.92.8.3626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004973137
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1088/0305-4470/24/22/019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059071922
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1103/physreve.48.1469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060715589
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1103/physreve.52.2361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060718316
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1103/physreve.55.860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021855680
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1103/physreve.59.2746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025634743
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1103/physrevlett.72.3907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809221
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1103/physrevlett.76.4070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001592841
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1126/science.1853201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062510404
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1126/science.225.4666.983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062529173
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1209/epl/i2000-00128-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042026828
    135 rdf:type schema:CreativeWork
    136 https://www.grid.ac/institutes/grid.157869.4 schema:alternateName Istituto Nazionale Per La Fisica Della Materia
    137 schema:name Dipartimento di Fisica, Universit√° `La Sapienza', P.zle A. Moro, 2, I-00185, Roma, Italy
    138 INFM, UdR Firenze, L.go E. Fermi, 2, I-50125, Firenze, Italy
    139 rdf:type schema:Organization
    140 https://www.grid.ac/institutes/grid.425378.f schema:alternateName Istituto Nazionale di Ottica
    141 schema:name INFM, UdR Firenze, L.go E. Fermi, 2, I-50125, Firenze, Italy
    142 Istituto Nazionale di Ottica Applicata, L.go E. Fermi, 6, I-50125, Firenze, Italy
    143 rdf:type schema:Organization
    144 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
    145 schema:name Dipartimento di Fisica, Universit√° `La Sapienza', P.zle A. Moro, 2, I-00185, Roma, Italy
    146 INFM, UdR Firenze, L.go E. Fermi, 2, I-50125, Firenze, Italy
    147 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...