High Order Long-Step Methods for Solving Linear Complementarity Problems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-03

AUTHORS

Josef Stoer

ABSTRACT

The paper is concerned with methods for solving linear complementarity problems (LCP) that are monotone or at least sufficient in the sense of Cottle, Pang and Venkateswaran (1989). A basic concept of interior-point-methods is the concept of (perhaps weighted) feasible or infeasible interior-point paths. They converge to a solution of the LCP if a natural path parameter, usually the current duality gap, tends to 0.After reviewing some basic analyticity properties of these paths it is shown how these properties can be used to devise also long-step path-following methods (and not only predictor–corrector type methods) for which the duality gap converges Q-superlinearly to 0 with an arbitrarily high order. More... »

PAGES

149-159

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1012951021320

DOI

http://dx.doi.org/10.1023/a:1012951021320

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043516777


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Angewandte Mathematik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-97074, W\u00fcrzburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Institut f\u00fcr Angewandte Mathematik, Universit\u00e4t W\u00fcrzburg, Am Hubland, D-97074, W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoer", 
        "givenName": "Josef", 
        "id": "sg:person.011465456275.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465456275.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01582151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013801121", 
          "https://doi.org/10.1007/bf01582151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02206813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052025824", 
          "https://doi.org/10.1007/bf02206813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02680568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044298563", 
          "https://doi.org/10.1007/bf02680568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026492106091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015604415", 
          "https://doi.org/10.1023/a:1026492106091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01204707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053155618", 
          "https://doi.org/10.1007/bf01204707"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-03", 
    "datePublishedReg": "2001-03-01", 
    "description": "The paper is concerned with methods for solving linear complementarity problems (LCP) that are monotone or at least sufficient in the sense of Cottle, Pang and Venkateswaran (1989). A basic concept of interior-point-methods is the concept of (perhaps weighted) feasible or infeasible interior-point paths. They converge to a solution of the LCP if a natural path parameter, usually the current duality gap, tends to 0.After reviewing some basic analyticity properties of these paths it is shown how these properties can be used to devise also long-step path-following methods (and not only predictor\u2013corrector type methods) for which the duality gap converges Q-superlinearly to 0 with an arbitrarily high order.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1012951021320", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048429", 
        "issn": [
          "0254-5330", 
          "1572-9338"
        ], 
        "name": "Annals of Operations Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "103"
      }
    ], 
    "keywords": [
      "linear complementarity problem", 
      "complementarity problem", 
      "long-step method", 
      "path-following method", 
      "duality gap", 
      "analyticity properties", 
      "path parameters", 
      "higher order", 
      "basic concepts", 
      "problem", 
      "Venkateswaran", 
      "path", 
      "properties", 
      "solution", 
      "parameters", 
      "Cottle", 
      "concept", 
      "sense", 
      "order", 
      "Pang", 
      "gap", 
      "method", 
      "paper"
    ], 
    "name": "High Order Long-Step Methods for Solving Linear Complementarity Problems", 
    "pagination": "149-159", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043516777"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1012951021320"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1012951021320", 
      "https://app.dimensions.ai/details/publication/pub.1043516777"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_345.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1012951021320"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1012951021320'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1012951021320'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1012951021320'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1012951021320'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      22 PREDICATES      54 URIs      41 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1012951021320 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N669d0196570044b9842b9714a9017ca6
4 schema:citation sg:pub.10.1007/bf01204707
5 sg:pub.10.1007/bf01582151
6 sg:pub.10.1007/bf02206813
7 sg:pub.10.1007/bf02680568
8 sg:pub.10.1023/a:1026492106091
9 schema:datePublished 2001-03
10 schema:datePublishedReg 2001-03-01
11 schema:description The paper is concerned with methods for solving linear complementarity problems (LCP) that are monotone or at least sufficient in the sense of Cottle, Pang and Venkateswaran (1989). A basic concept of interior-point-methods is the concept of (perhaps weighted) feasible or infeasible interior-point paths. They converge to a solution of the LCP if a natural path parameter, usually the current duality gap, tends to 0.After reviewing some basic analyticity properties of these paths it is shown how these properties can be used to devise also long-step path-following methods (and not only predictor–corrector type methods) for which the duality gap converges Q-superlinearly to 0 with an arbitrarily high order.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N3fc4c26cf2354dec9571d544837d2dc0
16 Nf7accffacfc641d6833d3b0c3aa9c377
17 sg:journal.1048429
18 schema:keywords Cottle
19 Pang
20 Venkateswaran
21 analyticity properties
22 basic concepts
23 complementarity problem
24 concept
25 duality gap
26 gap
27 higher order
28 linear complementarity problem
29 long-step method
30 method
31 order
32 paper
33 parameters
34 path
35 path parameters
36 path-following method
37 problem
38 properties
39 sense
40 solution
41 schema:name High Order Long-Step Methods for Solving Linear Complementarity Problems
42 schema:pagination 149-159
43 schema:productId N77385b505d67426395cbde8603b9f55f
44 Nd4c80be5b4ed460fb340e981ec0e218d
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043516777
46 https://doi.org/10.1023/a:1012951021320
47 schema:sdDatePublished 2022-06-01T22:02
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Ne4ac56a5a381469bb617f0a96fa92ee4
50 schema:url https://doi.org/10.1023/a:1012951021320
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N3fc4c26cf2354dec9571d544837d2dc0 schema:volumeNumber 103
55 rdf:type schema:PublicationVolume
56 N669d0196570044b9842b9714a9017ca6 rdf:first sg:person.011465456275.61
57 rdf:rest rdf:nil
58 N77385b505d67426395cbde8603b9f55f schema:name dimensions_id
59 schema:value pub.1043516777
60 rdf:type schema:PropertyValue
61 Nd4c80be5b4ed460fb340e981ec0e218d schema:name doi
62 schema:value 10.1023/a:1012951021320
63 rdf:type schema:PropertyValue
64 Ne4ac56a5a381469bb617f0a96fa92ee4 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nf7accffacfc641d6833d3b0c3aa9c377 schema:issueNumber 1-4
67 rdf:type schema:PublicationIssue
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
72 schema:name Numerical and Computational Mathematics
73 rdf:type schema:DefinedTerm
74 sg:journal.1048429 schema:issn 0254-5330
75 1572-9338
76 schema:name Annals of Operations Research
77 schema:publisher Springer Nature
78 rdf:type schema:Periodical
79 sg:person.011465456275.61 schema:affiliation grid-institutes:grid.8379.5
80 schema:familyName Stoer
81 schema:givenName Josef
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465456275.61
83 rdf:type schema:Person
84 sg:pub.10.1007/bf01204707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053155618
85 https://doi.org/10.1007/bf01204707
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf01582151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013801121
88 https://doi.org/10.1007/bf01582151
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf02206813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052025824
91 https://doi.org/10.1007/bf02206813
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf02680568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044298563
94 https://doi.org/10.1007/bf02680568
95 rdf:type schema:CreativeWork
96 sg:pub.10.1023/a:1026492106091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015604415
97 https://doi.org/10.1023/a:1026492106091
98 rdf:type schema:CreativeWork
99 grid-institutes:grid.8379.5 schema:alternateName Institut für Angewandte Mathematik, Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
100 schema:name Institut für Angewandte Mathematik, Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...