Nonlinear Modal Analysis of Structural Systems Using Multi-Mode Invariant Manifolds View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-07

AUTHORS

Eric Pesheck, Nicolas Boivin, Christophe Pierre, Steven W. Shaw

ABSTRACT

In this paper, an invariant manifold approach is introduced for the generationof reduced-order models for nonlinear vibrations of multi-degrees-of-freedomsystems. In particular, the invariant manifold approach for defining andconstructing nonlinear normal modes of vibration is extended to the case ofmulti-mode manifolds. The dynamic models obtained from this technique capture the essential coupling between modes of interest, while avoiding coupling fromother modes. Such an approach is useful for modeling complex systemresponses, and is essential when internal resonances exist between modes.The basic theory and a general, constructive methodology for the method arepresented. It is then applied to two example problems, one analytical andthe other finite-element based. Numerical simulation results are obtainedfor the full model and various types of reduced-order models, including theusual projection onto a set of linear modes, and the invariant manifoldapproach developed herein. The results show that the method is capable ofaccurately representing the nonlinear system dynamics with relatively fewdegrees of freedom over a range of vibration amplitudes. More... »

PAGES

183-205

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1012910918498

DOI

http://dx.doi.org/10.1023/a:1012910918498

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010360602


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109-2125, Ann Arbor, MI, U.S.A", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109-2125, Ann Arbor, MI, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pesheck", 
        "givenName": "Eric", 
        "id": "sg:person.016050611503.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016050611503.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109-2125, Ann Arbor, MI, U.S.A", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109-2125, Ann Arbor, MI, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boivin", 
        "givenName": "Nicolas", 
        "id": "sg:person.010143120703.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010143120703.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109-2125, Ann Arbor, MI, U.S.A", 
          "id": "http://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109-2125, Ann Arbor, MI, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pierre", 
        "givenName": "Christophe", 
        "id": "sg:person.010172370375.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010172370375.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, Michigan State University, 48824-1226, East Lansing, MI, U.S.A", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Mechanical Engineering, Michigan State University, 48824-1226, East Lansing, MI, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaw", 
        "givenName": "Steven W.", 
        "id": "sg:person.016303032223.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303032223.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00114796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039517610", 
          "https://doi.org/10.1007/bf00114796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00045620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086035939", 
          "https://doi.org/10.1007/bf00045620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00045454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026765473", 
          "https://doi.org/10.1007/bf00045454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02430640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046200693", 
          "https://doi.org/10.1007/bf02430640"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-07", 
    "datePublishedReg": "2001-07-01", 
    "description": "In this paper, an invariant manifold approach is introduced for the generationof reduced-order models for nonlinear vibrations of multi-degrees-of-freedomsystems. In particular, the invariant manifold approach for defining andconstructing nonlinear normal modes of vibration is extended to the case ofmulti-mode manifolds. The dynamic models obtained from this technique capture the essential coupling between modes of interest, while avoiding coupling fromother modes. Such an approach is useful for modeling complex systemresponses, and is essential when internal resonances exist between modes.The basic theory and a general, constructive methodology for the method arepresented. It is then applied to two example problems, one analytical andthe other finite-element based. Numerical simulation results are obtainedfor the full model and various types of reduced-order models, including theusual projection onto a set of linear modes, and the invariant manifoldapproach developed herein. The results show that the method is capable ofaccurately representing the nonlinear system dynamics with relatively fewdegrees of freedom over a range of vibration amplitudes.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1012910918498", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "keywords": [
      "reduced-order model", 
      "invariant manifold approach", 
      "Multi-Mode Invariant Manifolds", 
      "manifold approach", 
      "nonlinear system dynamics", 
      "nonlinear modal analysis", 
      "nonlinear normal modes", 
      "invariant manifolds", 
      "constructive methodology", 
      "numerical simulation results", 
      "system dynamics", 
      "modes of interest", 
      "example problems", 
      "nonlinear vibration", 
      "internal resonance", 
      "full model", 
      "manifold", 
      "basic theory", 
      "simulation results", 
      "dynamic model", 
      "structural systems", 
      "linear mode", 
      "modal analysis", 
      "essential coupling", 
      "freedomsystems", 
      "model", 
      "vibration amplitude", 
      "normal modes", 
      "approach", 
      "problem", 
      "theory", 
      "vibration", 
      "dynamics", 
      "set", 
      "methodology", 
      "freedom", 
      "system", 
      "projections", 
      "results", 
      "technique", 
      "mode", 
      "coupling", 
      "interest", 
      "amplitude", 
      "analysis", 
      "method", 
      "types", 
      "range", 
      "resonance", 
      "paper", 
      "generationof reduced-order models", 
      "case ofmulti-mode manifolds", 
      "ofmulti-mode manifolds", 
      "coupling fromother modes", 
      "fromother modes", 
      "complex systemresponses", 
      "systemresponses", 
      "theusual projection", 
      "invariant manifoldapproach", 
      "manifoldapproach", 
      "fewdegrees of freedom", 
      "fewdegrees"
    ], 
    "name": "Nonlinear Modal Analysis of Structural Systems Using Multi-Mode Invariant Manifolds", 
    "pagination": "183-205", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010360602"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1012910918498"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1012910918498", 
      "https://app.dimensions.ai/details/publication/pub.1010360602"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_333.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1012910918498"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1012910918498'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1012910918498'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1012910918498'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1012910918498'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      22 PREDICATES      92 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1012910918498 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author N1e33f6a967904f1ea0c613f967a1fe50
4 schema:citation sg:pub.10.1007/bf00045454
5 sg:pub.10.1007/bf00045620
6 sg:pub.10.1007/bf00114796
7 sg:pub.10.1007/bf02430640
8 schema:datePublished 2001-07
9 schema:datePublishedReg 2001-07-01
10 schema:description In this paper, an invariant manifold approach is introduced for the generationof reduced-order models for nonlinear vibrations of multi-degrees-of-freedomsystems. In particular, the invariant manifold approach for defining andconstructing nonlinear normal modes of vibration is extended to the case ofmulti-mode manifolds. The dynamic models obtained from this technique capture the essential coupling between modes of interest, while avoiding coupling fromother modes. Such an approach is useful for modeling complex systemresponses, and is essential when internal resonances exist between modes.The basic theory and a general, constructive methodology for the method arepresented. It is then applied to two example problems, one analytical andthe other finite-element based. Numerical simulation results are obtainedfor the full model and various types of reduced-order models, including theusual projection onto a set of linear modes, and the invariant manifoldapproach developed herein. The results show that the method is capable ofaccurately representing the nonlinear system dynamics with relatively fewdegrees of freedom over a range of vibration amplitudes.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N06190dd94e694d918083b2f414630021
15 N116f63ce02a4424b8582c5aa1f9d93dc
16 sg:journal.1040905
17 schema:keywords Multi-Mode Invariant Manifolds
18 amplitude
19 analysis
20 approach
21 basic theory
22 case ofmulti-mode manifolds
23 complex systemresponses
24 constructive methodology
25 coupling
26 coupling fromother modes
27 dynamic model
28 dynamics
29 essential coupling
30 example problems
31 fewdegrees
32 fewdegrees of freedom
33 freedom
34 freedomsystems
35 fromother modes
36 full model
37 generationof reduced-order models
38 interest
39 internal resonance
40 invariant manifold approach
41 invariant manifoldapproach
42 invariant manifolds
43 linear mode
44 manifold
45 manifold approach
46 manifoldapproach
47 method
48 methodology
49 modal analysis
50 mode
51 model
52 modes of interest
53 nonlinear modal analysis
54 nonlinear normal modes
55 nonlinear system dynamics
56 nonlinear vibration
57 normal modes
58 numerical simulation results
59 ofmulti-mode manifolds
60 paper
61 problem
62 projections
63 range
64 reduced-order model
65 resonance
66 results
67 set
68 simulation results
69 structural systems
70 system
71 system dynamics
72 systemresponses
73 technique
74 theory
75 theusual projection
76 types
77 vibration
78 vibration amplitude
79 schema:name Nonlinear Modal Analysis of Structural Systems Using Multi-Mode Invariant Manifolds
80 schema:pagination 183-205
81 schema:productId N9ad2206a655f45c1b77c5ac87a9a504e
82 Nb61503c9b9cb4f13a6e019b384ca1774
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010360602
84 https://doi.org/10.1023/a:1012910918498
85 schema:sdDatePublished 2021-12-01T19:13
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N21214deb643c42e8ab12002119f971f3
88 schema:url https://doi.org/10.1023/a:1012910918498
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N06190dd94e694d918083b2f414630021 schema:issueNumber 1-3
93 rdf:type schema:PublicationIssue
94 N116f63ce02a4424b8582c5aa1f9d93dc schema:volumeNumber 25
95 rdf:type schema:PublicationVolume
96 N1e33f6a967904f1ea0c613f967a1fe50 rdf:first sg:person.016050611503.69
97 rdf:rest N639e538eb8fb4cc8852db7175b3abc2a
98 N21214deb643c42e8ab12002119f971f3 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N639e538eb8fb4cc8852db7175b3abc2a rdf:first sg:person.010143120703.47
101 rdf:rest Ncc234e352a484abcab00d1c4767ab3f7
102 N9ad2206a655f45c1b77c5ac87a9a504e schema:name doi
103 schema:value 10.1023/a:1012910918498
104 rdf:type schema:PropertyValue
105 Nb61503c9b9cb4f13a6e019b384ca1774 schema:name dimensions_id
106 schema:value pub.1010360602
107 rdf:type schema:PropertyValue
108 Nc333dfd393c1499f82872f76c7844882 rdf:first sg:person.016303032223.67
109 rdf:rest rdf:nil
110 Ncc234e352a484abcab00d1c4767ab3f7 rdf:first sg:person.010172370375.92
111 rdf:rest Nc333dfd393c1499f82872f76c7844882
112 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
113 schema:name Engineering
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
116 schema:name Civil Engineering
117 rdf:type schema:DefinedTerm
118 sg:journal.1040905 schema:issn 0924-090X
119 1573-269X
120 schema:name Nonlinear Dynamics
121 schema:publisher Springer Nature
122 rdf:type schema:Periodical
123 sg:person.010143120703.47 schema:affiliation grid-institutes:grid.214458.e
124 schema:familyName Boivin
125 schema:givenName Nicolas
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010143120703.47
127 rdf:type schema:Person
128 sg:person.010172370375.92 schema:affiliation grid-institutes:grid.214458.e
129 schema:familyName Pierre
130 schema:givenName Christophe
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010172370375.92
132 rdf:type schema:Person
133 sg:person.016050611503.69 schema:affiliation grid-institutes:grid.214458.e
134 schema:familyName Pesheck
135 schema:givenName Eric
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016050611503.69
137 rdf:type schema:Person
138 sg:person.016303032223.67 schema:affiliation grid-institutes:grid.17088.36
139 schema:familyName Shaw
140 schema:givenName Steven W.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303032223.67
142 rdf:type schema:Person
143 sg:pub.10.1007/bf00045454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026765473
144 https://doi.org/10.1007/bf00045454
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/bf00045620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086035939
147 https://doi.org/10.1007/bf00045620
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/bf00114796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039517610
150 https://doi.org/10.1007/bf00114796
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/bf02430640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046200693
153 https://doi.org/10.1007/bf02430640
154 rdf:type schema:CreativeWork
155 grid-institutes:grid.17088.36 schema:alternateName Department of Mechanical Engineering, Michigan State University, 48824-1226, East Lansing, MI, U.S.A
156 schema:name Department of Mechanical Engineering, Michigan State University, 48824-1226, East Lansing, MI, U.S.A
157 rdf:type schema:Organization
158 grid-institutes:grid.214458.e schema:alternateName Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109-2125, Ann Arbor, MI, U.S.A
159 schema:name Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 48109-2125, Ann Arbor, MI, U.S.A
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...