Modeling of Substance P and 5-HT Induced Synaptic Plasticity in the Lamprey Spinal CPG: Consequences for Network Pattern Generation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-09

AUTHORS

Alexander Kozlov, Jeanette Hellgren Kotaleski, Erik Aurell, Sten Grillner, Anders Lansner

ABSTRACT

Consequences of synaptic plasticity in the lamprey spinal CPG are analyzed by means of simulations. This is motivated by the effects substance P (a tachykinin) and serotonin (5-hydroxytryptamin; 5-HT) have on synaptic transmission in the locomotor network. Activity-dependent synaptic depression and potentiation have recently been shown experimentally using paired intracellular recordings. Although normally activity-dependent plasticity presumably does not contribute to the patterning of network activity, this changes in the presence of the neuromodulators substance P and 5-HT, which evoke significant plasticity. Substance P can induce a faster and larger depression of inhibitory connections but potentiation of excitatory inputs, whereas 5-HT induces facilitation of both inhibitory and excitatory inputs. Changes in the amplitude of the first postsynaptic potential are also seen. These changes could thus be a potential mechanism underlying the modulatory role these substances have on the rhythmic network activity. The aim of the present study has been to implement the activity dependent synaptic depression and facilitation induced by substance P and 5-HT into two alternative models of the lamprey spinal locomotor network, one relying on reciprocal inhibition for bursting and one in which each hemicord is capable of oscillations. The consequences of the plasticity of inhibitory and excitatory connections are then explored on the network level. In the intact spinal cord, tachykinins and 5-HT, which can be endogenously released, increase and decrease the frequency of the alternating left-right burst pattern, respectively. The frequency decreasing effect of 5-HT has previously been explained based on its conductance decreasing effect on K(Ca) underlying the postspike afterhyperpolarization (AHP). The present simulations show that short-term synaptic plasticity may have strong effects on frequency regulation in the lamprey spinal CPG. In the network model relying on reciprocal inhibition, the observed effects substance P and 5-HT have on network behavior (i.e., a frequency increase and decrease respectively) can to a substantial part be explained by their effects on the total extent and time dynamics of synaptic depression and facilitation. The cellular effects of these substances will in the 5-HT case further contribute to its network effect. More... »

PAGES

183-200

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1012806018730

DOI

http://dx.doi.org/10.1023/a:1012806018730

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044974561

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11717534


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Action Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Clocks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Excitatory Postsynaptic Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Functional Laterality", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Interneurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lampreys", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Locomotion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Animal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Motor Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Net", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Inhibition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuronal Plasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, AMPA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Receptors, N-Methyl-D-Aspartate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Serotonin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spinal Cord", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Substance P", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synapses", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synaptic Transmission", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Royal Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institute, SE-171 77, Stockholm, Sweden", 
            "Department of Numerical Analysis and Computing Science, Royal Institute of Technology, SE-100 44, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kozlov", 
        "givenName": "Alexander", 
        "id": "sg:person.01263563275.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263563275.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institute, SE-171 77, Stockholm, Sweden", 
            "Department of Numerical Analysis and Computing Science, Royal Institute of Technology, SE-100 44, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kotaleski", 
        "givenName": "Jeanette Hellgren", 
        "id": "sg:person.0746620713.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746620713.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Department of Numerical Analysis and Computing Science, Royal Institute of Technology, SE-100 44, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aurell", 
        "givenName": "Erik", 
        "id": "sg:person.01104576776.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104576776.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karolinska Institute", 
          "id": "https://www.grid.ac/institutes/grid.4714.6", 
          "name": [
            "Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institute, SE-171 77, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grillner", 
        "givenName": "Sten", 
        "id": "sg:person.01323426366.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323426366.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.5037.1", 
          "name": [
            "Department of Numerical Analysis and Computing Science, Royal Institute of Technology, SE-100 44, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lansner", 
        "givenName": "Anders", 
        "id": "sg:person.01127730755.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127730755.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s004220050316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000261754", 
          "https://doi.org/10.1007/s004220050316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0149-7634(94)90010-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003714851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0149-7634(94)90010-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003714851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-9800-5_69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003900748", 
          "https://doi.org/10.1007/978-1-4757-9800-5_69"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1998.tb09035.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005194879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1998.tb09035.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005194879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1460-9568.1998.00194.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007366721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-4388(00)00159-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008052485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000113207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011653807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ph.55.030193.002025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011766244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0166-2236(96)80018-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016417121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.275.5297.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016561054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004220050564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016597280", 
          "https://doi.org/10.1007/s004220050564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.1999.0441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019318675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00202382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023624371", 
          "https://doi.org/10.1007/bf00202382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00202382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023624371", 
          "https://doi.org/10.1007/bf00202382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008897031013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024452818", 
          "https://doi.org/10.1023/a:1008897031013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001756-199210000-00032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024872829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00001756-199210000-00032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024872829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0896-6273(00)80987-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025673450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1460-9568.2000.00095.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026361161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-2236(95)80008-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026997229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00203673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037853846", 
          "https://doi.org/10.1007/bf00203673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00203673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037853846", 
          "https://doi.org/10.1007/bf00203673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ne.14.030191.001125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038596840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01185408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040504171", 
          "https://doi.org/10.1007/bf01185408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01185408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040504171", 
          "https://doi.org/10.1007/bf01185408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00962716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041424074", 
          "https://doi.org/10.1007/bf00962716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00203132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043619096", 
          "https://doi.org/10.1007/bf00203132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00203132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043619096", 
          "https://doi.org/10.1007/bf00203132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0173(98)00002-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046893856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004220050565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049796415", 
          "https://doi.org/10.1007/s004220050565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00962719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053611171", 
          "https://doi.org/10.1007/bf00962719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1411575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062480879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.265.5180.1872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062548879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3563512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062620030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.19-05-01647.1999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074251927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1999.81.3.1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074267355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1999.81.5.2037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074455419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.20-05-01754.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074593775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.20-08-03041.2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074618218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.2000.83.5.3031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074638108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1992.68.6.1939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075308262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1992.67.6.1683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077143672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1991.66.2.473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077350432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1989.61.4.759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079005252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1982.47.5.961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081604926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081901022", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1994.72.4.1852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082523719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1993.70.2.695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082652957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physrev.1996.76.3.687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082940688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1996.76.6.4031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083026954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1997.77.4.1795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083075776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1997.78.1.214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083124192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.18-12-04800.1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083273145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.18-19-08095.1998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083318063"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-09", 
    "datePublishedReg": "2001-09-01", 
    "description": "Consequences of synaptic plasticity in the lamprey spinal CPG are analyzed by means of simulations. This is motivated by the effects substance P (a tachykinin) and serotonin (5-hydroxytryptamin; 5-HT) have on synaptic transmission in the locomotor network. Activity-dependent synaptic depression and potentiation have recently been shown experimentally using paired intracellular recordings. Although normally activity-dependent plasticity presumably does not contribute to the patterning of network activity, this changes in the presence of the neuromodulators substance P and 5-HT, which evoke significant plasticity. Substance P can induce a faster and larger depression of inhibitory connections but potentiation of excitatory inputs, whereas 5-HT induces facilitation of both inhibitory and excitatory inputs. Changes in the amplitude of the first postsynaptic potential are also seen. These changes could thus be a potential mechanism underlying the modulatory role these substances have on the rhythmic network activity. The aim of the present study has been to implement the activity dependent synaptic depression and facilitation induced by substance P and 5-HT into two alternative models of the lamprey spinal locomotor network, one relying on reciprocal inhibition for bursting and one in which each hemicord is capable of oscillations. The consequences of the plasticity of inhibitory and excitatory connections are then explored on the network level. In the intact spinal cord, tachykinins and 5-HT, which can be endogenously released, increase and decrease the frequency of the alternating left-right burst pattern, respectively. The frequency decreasing effect of 5-HT has previously been explained based on its conductance decreasing effect on K(Ca) underlying the postspike afterhyperpolarization (AHP). The present simulations show that short-term synaptic plasticity may have strong effects on frequency regulation in the lamprey spinal CPG. In the network model relying on reciprocal inhibition, the observed effects substance P and 5-HT have on network behavior (i.e., a frequency increase and decrease respectively) can to a substantial part be explained by their effects on the total extent and time dynamics of synaptic depression and facilitation. The cellular effects of these substances will in the 5-HT case further contribute to its network effect.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1012806018730", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1112739", 
        "issn": [
          "0929-5313", 
          "1573-6873"
        ], 
        "name": "Journal of Computational Neuroscience", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Modeling of Substance P and 5-HT Induced Synaptic Plasticity in the Lamprey Spinal CPG: Consequences for Network Pattern Generation", 
    "pagination": "183-200", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d63a8c8d2dd4c8d6718eb86dd3c575e42399b0575242a6ea72a00567c03900b4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11717534"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9439510"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1012806018730"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044974561"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1012806018730", 
      "https://app.dimensions.ai/details/publication/pub.1044974561"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1012806018730"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1012806018730'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1012806018730'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1012806018730'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1012806018730'


 

This table displays all metadata directly associated to this object as RDF triples.

346 TRIPLES      21 PREDICATES      100 URIs      43 LITERALS      31 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1012806018730 schema:about N2774678d47594911a888ea1696374ea0
2 N2c4234d2c89248fbbd1027108797ac57
3 N2f6fc342bb5142a5bdeade4ec3411f7b
4 N33dabf7026ba41358e2bd367fe9449e1
5 N3741bb2cecb04bf3bf466a24753fa45f
6 N45e44069555c44f3a56eebece606e793
7 N55ef8e9a9c894e58b416a05c83ba3532
8 N567d5f956ce74cfc8361499ab2edb3a3
9 N5a931dc6f745453d88dce19ea73ea073
10 N5cc938b584bf4719bc16746606686b18
11 N62a1e3a13d4d4020bd87f0c788eabaf0
12 N707c3a85fee945a982b22cd92f5a13cc
13 N8aec3136114946c19aeb6a52d44efa07
14 N8d6a005096af4d9faa2693dfa837a206
15 N9fa69159f3274c44aaabe700325e65cd
16 Na7dc78f6aa294dbca0762231929a681c
17 Na7ec56c428e746fdb1388afcf7cf6680
18 Nab42712098e4472ebcac81be92eddc57
19 Nbaf99947554c462a961546c7db5aeaf4
20 Nde57dff343a44b938863fd389978de97
21 Ne3fc4f296a7b467e9eee8503d6cf1099
22 Nf0bfbad84cd345559140831897ef84a8
23 anzsrc-for:11
24 anzsrc-for:1109
25 schema:author Nbb97e401bb41462fa7edac90c4fd276a
26 schema:citation sg:pub.10.1007/978-1-4757-9800-5_69
27 sg:pub.10.1007/bf00202382
28 sg:pub.10.1007/bf00203132
29 sg:pub.10.1007/bf00203673
30 sg:pub.10.1007/bf00962716
31 sg:pub.10.1007/bf00962719
32 sg:pub.10.1007/bf01185408
33 sg:pub.10.1007/s004220050316
34 sg:pub.10.1007/s004220050564
35 sg:pub.10.1007/s004220050565
36 sg:pub.10.1023/a:1008897031013
37 https://app.dimensions.ai/details/publication/pub.1081901022
38 https://doi.org/10.1016/0149-7634(94)90010-8
39 https://doi.org/10.1016/0166-2236(95)80008-p
40 https://doi.org/10.1016/s0165-0173(98)00002-2
41 https://doi.org/10.1016/s0166-2236(96)80018-x
42 https://doi.org/10.1016/s0896-6273(00)80987-3
43 https://doi.org/10.1016/s0959-4388(00)00159-8
44 https://doi.org/10.1046/j.1460-9568.1998.00194.x
45 https://doi.org/10.1046/j.1460-9568.2000.00095.x
46 https://doi.org/10.1097/00001756-199210000-00032
47 https://doi.org/10.1098/rstb.1999.0441
48 https://doi.org/10.1111/j.1749-6632.1998.tb09035.x
49 https://doi.org/10.1126/science.1411575
50 https://doi.org/10.1126/science.265.5180.1872
51 https://doi.org/10.1126/science.275.5297.221
52 https://doi.org/10.1126/science.3563512
53 https://doi.org/10.1146/annurev.ne.14.030191.001125
54 https://doi.org/10.1146/annurev.ph.55.030193.002025
55 https://doi.org/10.1152/jn.1982.47.5.961
56 https://doi.org/10.1152/jn.1989.61.4.759
57 https://doi.org/10.1152/jn.1991.66.2.473
58 https://doi.org/10.1152/jn.1992.67.6.1683
59 https://doi.org/10.1152/jn.1992.68.6.1939
60 https://doi.org/10.1152/jn.1993.70.2.695
61 https://doi.org/10.1152/jn.1994.72.4.1852
62 https://doi.org/10.1152/jn.1996.76.6.4031
63 https://doi.org/10.1152/jn.1997.77.4.1795
64 https://doi.org/10.1152/jn.1997.78.1.214
65 https://doi.org/10.1152/jn.1999.81.3.1318
66 https://doi.org/10.1152/jn.1999.81.5.2037
67 https://doi.org/10.1152/jn.2000.83.5.3031
68 https://doi.org/10.1152/physrev.1996.76.3.687
69 https://doi.org/10.1159/000113207
70 https://doi.org/10.1523/jneurosci.18-12-04800.1998
71 https://doi.org/10.1523/jneurosci.18-19-08095.1998
72 https://doi.org/10.1523/jneurosci.19-05-01647.1999
73 https://doi.org/10.1523/jneurosci.20-05-01754.2000
74 https://doi.org/10.1523/jneurosci.20-08-03041.2000
75 schema:datePublished 2001-09
76 schema:datePublishedReg 2001-09-01
77 schema:description Consequences of synaptic plasticity in the lamprey spinal CPG are analyzed by means of simulations. This is motivated by the effects substance P (a tachykinin) and serotonin (5-hydroxytryptamin; 5-HT) have on synaptic transmission in the locomotor network. Activity-dependent synaptic depression and potentiation have recently been shown experimentally using paired intracellular recordings. Although normally activity-dependent plasticity presumably does not contribute to the patterning of network activity, this changes in the presence of the neuromodulators substance P and 5-HT, which evoke significant plasticity. Substance P can induce a faster and larger depression of inhibitory connections but potentiation of excitatory inputs, whereas 5-HT induces facilitation of both inhibitory and excitatory inputs. Changes in the amplitude of the first postsynaptic potential are also seen. These changes could thus be a potential mechanism underlying the modulatory role these substances have on the rhythmic network activity. The aim of the present study has been to implement the activity dependent synaptic depression and facilitation induced by substance P and 5-HT into two alternative models of the lamprey spinal locomotor network, one relying on reciprocal inhibition for bursting and one in which each hemicord is capable of oscillations. The consequences of the plasticity of inhibitory and excitatory connections are then explored on the network level. In the intact spinal cord, tachykinins and 5-HT, which can be endogenously released, increase and decrease the frequency of the alternating left-right burst pattern, respectively. The frequency decreasing effect of 5-HT has previously been explained based on its conductance decreasing effect on K(Ca) underlying the postspike afterhyperpolarization (AHP). The present simulations show that short-term synaptic plasticity may have strong effects on frequency regulation in the lamprey spinal CPG. In the network model relying on reciprocal inhibition, the observed effects substance P and 5-HT have on network behavior (i.e., a frequency increase and decrease respectively) can to a substantial part be explained by their effects on the total extent and time dynamics of synaptic depression and facilitation. The cellular effects of these substances will in the 5-HT case further contribute to its network effect.
78 schema:genre research_article
79 schema:inLanguage en
80 schema:isAccessibleForFree false
81 schema:isPartOf N49e5a521b0a64898998f4d88e8de6fbb
82 Nd9dcd4eea9e84585a129b1a5b42f33a7
83 sg:journal.1112739
84 schema:name Modeling of Substance P and 5-HT Induced Synaptic Plasticity in the Lamprey Spinal CPG: Consequences for Network Pattern Generation
85 schema:pagination 183-200
86 schema:productId N45aa6510863f48a0ac300f66a8ff77de
87 N73104e1f2bc5473eb42d3368d330e19e
88 N749958eebd82486d8e0c2885ecd85d80
89 N751b439357d849a6bd1dfac165f8ef00
90 Neb4bdaf601c3486db335bb71abc4c9e2
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044974561
92 https://doi.org/10.1023/a:1012806018730
93 schema:sdDatePublished 2019-04-10T16:47
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N6b2cfd98486844918aad47a4b3efb892
96 schema:url http://link.springer.com/10.1023%2FA%3A1012806018730
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N2774678d47594911a888ea1696374ea0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Models, Animal
102 rdf:type schema:DefinedTerm
103 N2c4234d2c89248fbbd1027108797ac57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Biological Clocks
105 rdf:type schema:DefinedTerm
106 N2e96fc3b33384b2eb57d816b4fef2439 rdf:first sg:person.01323426366.41
107 rdf:rest Nbfa56ef36a2c40ca9610da1e013ff979
108 N2f6fc342bb5142a5bdeade4ec3411f7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Lampreys
110 rdf:type schema:DefinedTerm
111 N33dabf7026ba41358e2bd367fe9449e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Motor Neurons
113 rdf:type schema:DefinedTerm
114 N3741bb2cecb04bf3bf466a24753fa45f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Models, Neurological
116 rdf:type schema:DefinedTerm
117 N39e608f63c3d4570af87c00eb3252c71 rdf:first sg:person.01104576776.49
118 rdf:rest N2e96fc3b33384b2eb57d816b4fef2439
119 N45aa6510863f48a0ac300f66a8ff77de schema:name nlm_unique_id
120 schema:value 9439510
121 rdf:type schema:PropertyValue
122 N45e44069555c44f3a56eebece606e793 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Functional Laterality
124 rdf:type schema:DefinedTerm
125 N49e5a521b0a64898998f4d88e8de6fbb schema:volumeNumber 11
126 rdf:type schema:PublicationVolume
127 N55ef8e9a9c894e58b416a05c83ba3532 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Synapses
129 rdf:type schema:DefinedTerm
130 N567d5f956ce74cfc8361499ab2edb3a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Serotonin
132 rdf:type schema:DefinedTerm
133 N5a931dc6f745453d88dce19ea73ea073 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Receptors, AMPA
135 rdf:type schema:DefinedTerm
136 N5cc938b584bf4719bc16746606686b18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Excitatory Postsynaptic Potentials
138 rdf:type schema:DefinedTerm
139 N62a1e3a13d4d4020bd87f0c788eabaf0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Action Potentials
141 rdf:type schema:DefinedTerm
142 N6b2cfd98486844918aad47a4b3efb892 schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 N707c3a85fee945a982b22cd92f5a13cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Nerve Net
146 rdf:type schema:DefinedTerm
147 N73104e1f2bc5473eb42d3368d330e19e schema:name doi
148 schema:value 10.1023/a:1012806018730
149 rdf:type schema:PropertyValue
150 N749958eebd82486d8e0c2885ecd85d80 schema:name dimensions_id
151 schema:value pub.1044974561
152 rdf:type schema:PropertyValue
153 N751b439357d849a6bd1dfac165f8ef00 schema:name readcube_id
154 schema:value d63a8c8d2dd4c8d6718eb86dd3c575e42399b0575242a6ea72a00567c03900b4
155 rdf:type schema:PropertyValue
156 N8aec3136114946c19aeb6a52d44efa07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Animals
158 rdf:type schema:DefinedTerm
159 N8d6a005096af4d9faa2693dfa837a206 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Interneurons
161 rdf:type schema:DefinedTerm
162 N9fa69159f3274c44aaabe700325e65cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Locomotion
164 rdf:type schema:DefinedTerm
165 Na7dc78f6aa294dbca0762231929a681c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Substance P
167 rdf:type schema:DefinedTerm
168 Na7ec56c428e746fdb1388afcf7cf6680 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Neural Networks (Computer)
170 rdf:type schema:DefinedTerm
171 Nab42712098e4472ebcac81be92eddc57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Spinal Cord
173 rdf:type schema:DefinedTerm
174 Nbaf99947554c462a961546c7db5aeaf4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Neuronal Plasticity
176 rdf:type schema:DefinedTerm
177 Nbb97e401bb41462fa7edac90c4fd276a rdf:first sg:person.01263563275.63
178 rdf:rest Nc0a01007dfb84d13a3accfe07e426d97
179 Nbfa56ef36a2c40ca9610da1e013ff979 rdf:first sg:person.01127730755.09
180 rdf:rest rdf:nil
181 Nc0a01007dfb84d13a3accfe07e426d97 rdf:first sg:person.0746620713.74
182 rdf:rest N39e608f63c3d4570af87c00eb3252c71
183 Nd9dcd4eea9e84585a129b1a5b42f33a7 schema:issueNumber 2
184 rdf:type schema:PublicationIssue
185 Nde57dff343a44b938863fd389978de97 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Neural Inhibition
187 rdf:type schema:DefinedTerm
188 Ne3fc4f296a7b467e9eee8503d6cf1099 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Synaptic Transmission
190 rdf:type schema:DefinedTerm
191 Neb4bdaf601c3486db335bb71abc4c9e2 schema:name pubmed_id
192 schema:value 11717534
193 rdf:type schema:PropertyValue
194 Nf0bfbad84cd345559140831897ef84a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Receptors, N-Methyl-D-Aspartate
196 rdf:type schema:DefinedTerm
197 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
198 schema:name Medical and Health Sciences
199 rdf:type schema:DefinedTerm
200 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
201 schema:name Neurosciences
202 rdf:type schema:DefinedTerm
203 sg:journal.1112739 schema:issn 0929-5313
204 1573-6873
205 schema:name Journal of Computational Neuroscience
206 rdf:type schema:Periodical
207 sg:person.01104576776.49 schema:affiliation https://www.grid.ac/institutes/grid.5037.1
208 schema:familyName Aurell
209 schema:givenName Erik
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104576776.49
211 rdf:type schema:Person
212 sg:person.01127730755.09 schema:affiliation https://www.grid.ac/institutes/grid.5037.1
213 schema:familyName Lansner
214 schema:givenName Anders
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127730755.09
216 rdf:type schema:Person
217 sg:person.01263563275.63 schema:affiliation https://www.grid.ac/institutes/grid.5037.1
218 schema:familyName Kozlov
219 schema:givenName Alexander
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263563275.63
221 rdf:type schema:Person
222 sg:person.01323426366.41 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
223 schema:familyName Grillner
224 schema:givenName Sten
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323426366.41
226 rdf:type schema:Person
227 sg:person.0746620713.74 schema:affiliation https://www.grid.ac/institutes/grid.5037.1
228 schema:familyName Kotaleski
229 schema:givenName Jeanette Hellgren
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746620713.74
231 rdf:type schema:Person
232 sg:pub.10.1007/978-1-4757-9800-5_69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003900748
233 https://doi.org/10.1007/978-1-4757-9800-5_69
234 rdf:type schema:CreativeWork
235 sg:pub.10.1007/bf00202382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023624371
236 https://doi.org/10.1007/bf00202382
237 rdf:type schema:CreativeWork
238 sg:pub.10.1007/bf00203132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043619096
239 https://doi.org/10.1007/bf00203132
240 rdf:type schema:CreativeWork
241 sg:pub.10.1007/bf00203673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037853846
242 https://doi.org/10.1007/bf00203673
243 rdf:type schema:CreativeWork
244 sg:pub.10.1007/bf00962716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041424074
245 https://doi.org/10.1007/bf00962716
246 rdf:type schema:CreativeWork
247 sg:pub.10.1007/bf00962719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053611171
248 https://doi.org/10.1007/bf00962719
249 rdf:type schema:CreativeWork
250 sg:pub.10.1007/bf01185408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040504171
251 https://doi.org/10.1007/bf01185408
252 rdf:type schema:CreativeWork
253 sg:pub.10.1007/s004220050316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000261754
254 https://doi.org/10.1007/s004220050316
255 rdf:type schema:CreativeWork
256 sg:pub.10.1007/s004220050564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016597280
257 https://doi.org/10.1007/s004220050564
258 rdf:type schema:CreativeWork
259 sg:pub.10.1007/s004220050565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049796415
260 https://doi.org/10.1007/s004220050565
261 rdf:type schema:CreativeWork
262 sg:pub.10.1023/a:1008897031013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024452818
263 https://doi.org/10.1023/a:1008897031013
264 rdf:type schema:CreativeWork
265 https://app.dimensions.ai/details/publication/pub.1081901022 schema:CreativeWork
266 https://doi.org/10.1016/0149-7634(94)90010-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003714851
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/0166-2236(95)80008-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1026997229
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/s0165-0173(98)00002-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046893856
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1016/s0166-2236(96)80018-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016417121
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1016/s0896-6273(00)80987-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025673450
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1016/s0959-4388(00)00159-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008052485
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1046/j.1460-9568.1998.00194.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007366721
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1046/j.1460-9568.2000.00095.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026361161
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1097/00001756-199210000-00032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024872829
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1098/rstb.1999.0441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019318675
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1111/j.1749-6632.1998.tb09035.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005194879
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1126/science.1411575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062480879
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1126/science.265.5180.1872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062548879
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1126/science.275.5297.221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016561054
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1126/science.3563512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062620030
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1146/annurev.ne.14.030191.001125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038596840
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1146/annurev.ph.55.030193.002025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011766244
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1152/jn.1982.47.5.961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081604926
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1152/jn.1989.61.4.759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079005252
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1152/jn.1991.66.2.473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077350432
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1152/jn.1992.67.6.1683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077143672
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1152/jn.1992.68.6.1939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075308262
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1152/jn.1993.70.2.695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082652957
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1152/jn.1994.72.4.1852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082523719
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1152/jn.1996.76.6.4031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083026954
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1152/jn.1997.77.4.1795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083075776
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1152/jn.1997.78.1.214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083124192
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1152/jn.1999.81.3.1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074267355
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1152/jn.1999.81.5.2037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074455419
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1152/jn.2000.83.5.3031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074638108
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1152/physrev.1996.76.3.687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082940688
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1159/000113207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011653807
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1523/jneurosci.18-12-04800.1998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083273145
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1523/jneurosci.18-19-08095.1998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083318063
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1523/jneurosci.19-05-01647.1999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074251927
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1523/jneurosci.20-05-01754.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074593775
337 rdf:type schema:CreativeWork
338 https://doi.org/10.1523/jneurosci.20-08-03041.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074618218
339 rdf:type schema:CreativeWork
340 https://www.grid.ac/institutes/grid.4714.6 schema:alternateName Karolinska Institute
341 schema:name Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institute, SE-171 77, Stockholm, Sweden
342 rdf:type schema:Organization
343 https://www.grid.ac/institutes/grid.5037.1 schema:alternateName Royal Institute of Technology
344 schema:name Department of Numerical Analysis and Computing Science, Royal Institute of Technology, SE-100 44, Stockholm, Sweden
345 Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institute, SE-171 77, Stockholm, Sweden
346 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...