Towards Intelligent Semantic Caching for Web Sources View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-11

AUTHORS

Dongwon Lee, Wesley W. Chu

ABSTRACT

An intelligent semantic caching scheme suitable for web sources is presented. Since web sources typically have weaker querying capabilities than conventional databases, existing semantic caching schemes cannot be directly applied. Our proposal takes care of the difference between the query capabilities of an end user system and web sources. In addition, an analysis on the match types between a user's input query and cached queries is presented. Based on this analysis, we present an algorithm that finds the best matched query under different circumstances. Furthermore, a method to use semantic knowledge, acquired from the data, to avoid unnecessary access to web sources by transforming the cache miss to the cache hit is presented. To verify the effectiveness of the proposed semantic caching scheme, we first show how to generate synthetic queries exhibiting different levels of semantic localities. Then, using the test sets, we show that the proposed query matching technique is an efficient and effective way for semantic caching in web databases. More... »

PAGES

23-45

References to SciGraph publications

  • 2002-06-18. Answering Queries by Semantic Caches in DATABASE AND EXPERT SYSTEMS APPLICATIONS
  • 1994-02. Query answering via cooperative data inference in JOURNAL OF INTELLIGENT INFORMATION SYSTEMS
  • 2000-03. Semantic caching of Web queries in THE VLDB JOURNAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1012598631912

    DOI

    http://dx.doi.org/10.1023/a:1012598631912

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008695234


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California Los Angeles", 
              "id": "https://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "Department of Computer Science, University of California, 90095, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Dongwon", 
            "id": "sg:person.0602141620.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602141620.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California Los Angeles", 
              "id": "https://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "Department of Computer Science, University of California, 90095, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chu", 
            "givenName": "Wesley W.", 
            "id": "sg:person.01247344777.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247344777.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01014020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000180195", 
              "https://doi.org/10.1007/bf01014020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01014020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000180195", 
              "https://doi.org/10.1007/bf01014020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0306-4379(88)90014-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011363481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0306-4379(88)90014-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011363481"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s007780050080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017580813", 
              "https://doi.org/10.1007/s007780050080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/319950.319960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018127943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/290593.290605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021750639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/232616.232692", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034302752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/303976.304003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038141046"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48309-8_45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043494947", 
              "https://doi.org/10.1007/3-540-48309-8_45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48309-8_45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043494947", 
              "https://doi.org/10.1007/3-540-48309-8_45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/233269.233327", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047541439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/88636.87848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050769536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icde.1998.655768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095379213"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-11", 
        "datePublishedReg": "2001-11-01", 
        "description": "An intelligent semantic caching scheme suitable for web sources is presented. Since web sources typically have weaker querying capabilities than conventional databases, existing semantic caching schemes cannot be directly applied. Our proposal takes care of the difference between the query capabilities of an end user system and web sources. In addition, an analysis on the match types between a user's input query and cached queries is presented. Based on this analysis, we present an algorithm that finds the best matched query under different circumstances. Furthermore, a method to use semantic knowledge, acquired from the data, to avoid unnecessary access to web sources by transforming the cache miss to the cache hit is presented. To verify the effectiveness of the proposed semantic caching scheme, we first show how to generate synthetic queries exhibiting different levels of semantic localities. Then, using the test sets, we show that the proposed query matching technique is an efficient and effective way for semantic caching in web databases.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1012598631912", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1327483", 
            "issn": [
              "0925-9902", 
              "1573-7675"
            ], 
            "name": "Journal of Intelligent Information Systems", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Towards Intelligent Semantic Caching for Web Sources", 
        "pagination": "23-45", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "296d24b130307a3d4309e063f089b5a25bdafbab69d4c2d7f2aee07d2dabbffa"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1012598631912"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008695234"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1012598631912", 
          "https://app.dimensions.ai/details/publication/pub.1008695234"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000486.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023/A:1012598631912"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1012598631912'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1012598631912'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1012598631912'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1012598631912'


     

    This table displays all metadata directly associated to this object as RDF triples.

    104 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1012598631912 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author N056679851e1e4dc8acf2d15d0373966b
    4 schema:citation sg:pub.10.1007/3-540-48309-8_45
    5 sg:pub.10.1007/bf01014020
    6 sg:pub.10.1007/s007780050080
    7 https://doi.org/10.1016/0306-4379(88)90014-2
    8 https://doi.org/10.1109/icde.1998.655768
    9 https://doi.org/10.1145/232616.232692
    10 https://doi.org/10.1145/233269.233327
    11 https://doi.org/10.1145/290593.290605
    12 https://doi.org/10.1145/303976.304003
    13 https://doi.org/10.1145/319950.319960
    14 https://doi.org/10.1145/88636.87848
    15 schema:datePublished 2001-11
    16 schema:datePublishedReg 2001-11-01
    17 schema:description An intelligent semantic caching scheme suitable for web sources is presented. Since web sources typically have weaker querying capabilities than conventional databases, existing semantic caching schemes cannot be directly applied. Our proposal takes care of the difference between the query capabilities of an end user system and web sources. In addition, an analysis on the match types between a user's input query and cached queries is presented. Based on this analysis, we present an algorithm that finds the best matched query under different circumstances. Furthermore, a method to use semantic knowledge, acquired from the data, to avoid unnecessary access to web sources by transforming the cache miss to the cache hit is presented. To verify the effectiveness of the proposed semantic caching scheme, we first show how to generate synthetic queries exhibiting different levels of semantic localities. Then, using the test sets, we show that the proposed query matching technique is an efficient and effective way for semantic caching in web databases.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N3ffd1c5cd2d04736a7b1f134b8c3da0f
    22 N78c52cc504374b7f976e1d96dc9aaf8a
    23 sg:journal.1327483
    24 schema:name Towards Intelligent Semantic Caching for Web Sources
    25 schema:pagination 23-45
    26 schema:productId N7b7673143d514f60b252152c1148fad0
    27 Nf25b47308abc44c28b358c6d09edbf98
    28 Nf99570dada6b4b6e8dbc784cf0746815
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008695234
    30 https://doi.org/10.1023/a:1012598631912
    31 schema:sdDatePublished 2019-04-11T01:53
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher Ne509638e48984a76990bf74617eb9ded
    34 schema:url http://link.springer.com/10.1023/A:1012598631912
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N056679851e1e4dc8acf2d15d0373966b rdf:first sg:person.0602141620.25
    39 rdf:rest Nc8469324f51d4bada3ff0767d8f5646e
    40 N3ffd1c5cd2d04736a7b1f134b8c3da0f schema:volumeNumber 17
    41 rdf:type schema:PublicationVolume
    42 N78c52cc504374b7f976e1d96dc9aaf8a schema:issueNumber 1
    43 rdf:type schema:PublicationIssue
    44 N7b7673143d514f60b252152c1148fad0 schema:name dimensions_id
    45 schema:value pub.1008695234
    46 rdf:type schema:PropertyValue
    47 Nc8469324f51d4bada3ff0767d8f5646e rdf:first sg:person.01247344777.54
    48 rdf:rest rdf:nil
    49 Ne509638e48984a76990bf74617eb9ded schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 Nf25b47308abc44c28b358c6d09edbf98 schema:name doi
    52 schema:value 10.1023/a:1012598631912
    53 rdf:type schema:PropertyValue
    54 Nf99570dada6b4b6e8dbc784cf0746815 schema:name readcube_id
    55 schema:value 296d24b130307a3d4309e063f089b5a25bdafbab69d4c2d7f2aee07d2dabbffa
    56 rdf:type schema:PropertyValue
    57 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Information and Computing Sciences
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Information Systems
    62 rdf:type schema:DefinedTerm
    63 sg:journal.1327483 schema:issn 0925-9902
    64 1573-7675
    65 schema:name Journal of Intelligent Information Systems
    66 rdf:type schema:Periodical
    67 sg:person.01247344777.54 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
    68 schema:familyName Chu
    69 schema:givenName Wesley W.
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247344777.54
    71 rdf:type schema:Person
    72 sg:person.0602141620.25 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
    73 schema:familyName Lee
    74 schema:givenName Dongwon
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602141620.25
    76 rdf:type schema:Person
    77 sg:pub.10.1007/3-540-48309-8_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043494947
    78 https://doi.org/10.1007/3-540-48309-8_45
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/bf01014020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000180195
    81 https://doi.org/10.1007/bf01014020
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/s007780050080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017580813
    84 https://doi.org/10.1007/s007780050080
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1016/0306-4379(88)90014-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011363481
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1109/icde.1998.655768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095379213
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1145/232616.232692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034302752
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1145/233269.233327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047541439
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1145/290593.290605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021750639
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1145/303976.304003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038141046
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1145/319950.319960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018127943
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1145/88636.87848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050769536
    101 rdf:type schema:CreativeWork
    102 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
    103 schema:name Department of Computer Science, University of California, 90095, Los Angeles, CA, USA
    104 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...