Optical Properties of Ag and Au Nanoparticles Dispersed within the Pores of Monolithic Mesoporous Silica View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-12

AUTHORS

Weiping Cai, H. Hofmeister, T. Rainer, Wei Chen

ABSTRACT

The optical absorption of silver and gold nanoparticles dispersed within the pores of monolithic mesoporous silica upon annealing at elevated temperatures has been investigated. With decreasing particle size, the surface plasmon resonance position of the particles blue-shifts first and then red-shifts for silver/silica samples, but only red-shifts for gold/silica samples. This size evolution of the resonance position is completely different from that previously reported for fully embedded particles. We assume a local porosity at the particle/matrix interface, such that free surface of particles within the pores may be in contact with ambient air, and present a two-layer core/shell model to calculate the optical properties. These calculations also consider deviations from the optical constants of bulk matter to account for corresponding effects below about 10 nm particle size. From the good agreement between experimental results and model calculations, we conclude a peculiar particle/ambience interaction dominating the size evolution of the resonance. Because of the difference of core electron structure, the relative importance of the effects of local porosity and free surface, respectively, are different for silver and gold. For silver, the effect of the local porosity is stronger, but for gold the opposite is found. More... »

PAGES

441-451

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1012537817570

DOI

http://dx.doi.org/10.1023/a:1012537817570

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041183327


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Physics", 
          "id": "https://www.grid.ac/institutes/grid.467847.e", 
          "name": [
            "Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120, Halle, Germany", 
            "Chinese Academy of Sciences, Institute of Solid State Physics, 230031, Hefei, Anhui, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Weiping", 
        "id": "sg:person.01211671214.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211671214.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Microstructure Physics", 
          "id": "https://www.grid.ac/institutes/grid.450270.4", 
          "name": [
            "Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofmeister", 
        "givenName": "H.", 
        "id": "sg:person.0765751545.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765751545.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Martin Luther University Halle-Wittenberg", 
          "id": "https://www.grid.ac/institutes/grid.9018.0", 
          "name": [
            "Department of Physics, Martin-Luther University of Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06108, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rainer", 
        "givenName": "T.", 
        "id": "sg:person.07567050101.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567050101.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Solid State Physics", 
          "id": "https://www.grid.ac/institutes/grid.467847.e", 
          "name": [
            "Chinese Academy of Sciences, Institute of Solid State Physics, 230031, Hefei, Anhui, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Wei", 
        "id": "sg:person.015661017734.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015661017734.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00018737900101445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001544203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(93)90865-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003144888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(93)90865-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003144888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(73)90214-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003307935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(73)90214-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003307935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00332172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009550594", 
          "https://doi.org/10.1007/bf00332172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003390050688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014570274", 
          "https://doi.org/10.1007/s003390050688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/jmr.1998.0395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015034568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01429157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015272799", 
          "https://doi.org/10.1007/bf01429157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01429157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015272799", 
          "https://doi.org/10.1007/bf01429157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01614947408079624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015721345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100530170273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016825659", 
          "https://doi.org/10.1007/s100530170273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bbpc.19810850302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017023965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcat.1999.2604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017681430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01448327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026371668", 
          "https://doi.org/10.1007/bf01448327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01448327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026371668", 
          "https://doi.org/10.1007/bf01448327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(84)90206-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027979878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(84)90206-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027979878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1350-4177(96)00033-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028927536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(85)90239-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030164136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(85)90239-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030164136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0920-5861(96)00208-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031773825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bbpc.19840880407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037948591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0965-9773(99)00076-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040261586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100530050531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045135833", 
          "https://doi.org/10.1007/s100530050531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19083300302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045719821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/9/34/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046317704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01427000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046363020", 
          "https://doi.org/10.1007/bf01427000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01427000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046363020", 
          "https://doi.org/10.1007/bf01427000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100530050189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049455127", 
          "https://doi.org/10.1007/s100530050189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19524460202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049640414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00514a052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055738590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphyscol:1977220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056996680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.117750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057681955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.122566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057686723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.124427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057688563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1699834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057770278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.363983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057989952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.1715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.1715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.16.3513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060523029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.16.3513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060523029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.2828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.33.2828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060539435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.11317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060567147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.11317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060567147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.18178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.18178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.1963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.1963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.5105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.5105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.26.818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063041925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.24.001960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065100058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3579465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070381860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1075-1629(98)80013-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090145958"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-12", 
    "datePublishedReg": "2001-12-01", 
    "description": "The optical absorption of silver and gold nanoparticles dispersed within the pores of monolithic mesoporous silica upon annealing at elevated temperatures has been investigated. With decreasing particle size, the surface plasmon resonance position of the particles blue-shifts first and then red-shifts for silver/silica samples, but only red-shifts for gold/silica samples. This size evolution of the resonance position is completely different from that previously reported for fully embedded particles. We assume a local porosity at the particle/matrix interface, such that free surface of particles within the pores may be in contact with ambient air, and present a two-layer core/shell model to calculate the optical properties. These calculations also consider deviations from the optical constants of bulk matter to account for corresponding effects below about 10 nm particle size. From the good agreement between experimental results and model calculations, we conclude a peculiar particle/ambience interaction dominating the size evolution of the resonance. Because of the difference of core electron structure, the relative importance of the effects of local porosity and free surface, respectively, are different for silver and gold. For silver, the effect of the local porosity is stronger, but for gold the opposite is found.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1012537817570", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028317", 
        "issn": [
          "1388-0764", 
          "1572-896X"
        ], 
        "name": "Journal of Nanoparticle Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Optical Properties of Ag and Au Nanoparticles Dispersed within the Pores of Monolithic Mesoporous Silica", 
    "pagination": "441-451", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c42f4eced9b85f10241174219b7e6763d2d88d921e14f9435df8ce8d0353e731"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1012537817570"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041183327"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1012537817570", 
      "https://app.dimensions.ai/details/publication/pub.1041183327"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1012537817570"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1012537817570'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1012537817570'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1012537817570'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1012537817570'


 

This table displays all metadata directly associated to this object as RDF triples.

223 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1012537817570 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ndc22a5d44484423aa10701e748cf22c1
4 schema:citation sg:pub.10.1007/bf00332172
5 sg:pub.10.1007/bf01427000
6 sg:pub.10.1007/bf01429157
7 sg:pub.10.1007/bf01448327
8 sg:pub.10.1007/s003390050688
9 sg:pub.10.1007/s100530050189
10 sg:pub.10.1007/s100530050531
11 sg:pub.10.1007/s100530170273
12 https://doi.org/10.1002/andp.19083300302
13 https://doi.org/10.1002/andp.19524460202
14 https://doi.org/10.1002/bbpc.19810850302
15 https://doi.org/10.1002/bbpc.19840880407
16 https://doi.org/10.1006/jcat.1999.2604
17 https://doi.org/10.1016/0038-1098(73)90214-7
18 https://doi.org/10.1016/0039-6028(84)90206-1
19 https://doi.org/10.1016/0039-6028(85)90239-0
20 https://doi.org/10.1016/0039-6028(93)90865-h
21 https://doi.org/10.1016/s0920-5861(96)00208-8
22 https://doi.org/10.1016/s0965-9773(99)00076-8
23 https://doi.org/10.1016/s1075-1629(98)80013-4
24 https://doi.org/10.1016/s1350-4177(96)00033-8
25 https://doi.org/10.1021/ja00514a052
26 https://doi.org/10.1051/jphyscol:1977220
27 https://doi.org/10.1063/1.117750
28 https://doi.org/10.1063/1.122566
29 https://doi.org/10.1063/1.124427
30 https://doi.org/10.1063/1.1699834
31 https://doi.org/10.1063/1.363983
32 https://doi.org/10.1080/00018737900101445
33 https://doi.org/10.1080/01614947408079624
34 https://doi.org/10.1088/0953-8984/9/34/015
35 https://doi.org/10.1103/physrevb.14.1715
36 https://doi.org/10.1103/physrevb.16.3513
37 https://doi.org/10.1103/physrevb.33.2828
38 https://doi.org/10.1103/physrevb.48.11317
39 https://doi.org/10.1103/physrevb.48.18178
40 https://doi.org/10.1103/physrevb.57.1963
41 https://doi.org/10.1103/physrevlett.80.5105
42 https://doi.org/10.1143/jjap.26.818
43 https://doi.org/10.1364/ao.24.001960
44 https://doi.org/10.1557/jmr.1998.0395
45 https://doi.org/10.2307/3579465
46 schema:datePublished 2001-12
47 schema:datePublishedReg 2001-12-01
48 schema:description The optical absorption of silver and gold nanoparticles dispersed within the pores of monolithic mesoporous silica upon annealing at elevated temperatures has been investigated. With decreasing particle size, the surface plasmon resonance position of the particles blue-shifts first and then red-shifts for silver/silica samples, but only red-shifts for gold/silica samples. This size evolution of the resonance position is completely different from that previously reported for fully embedded particles. We assume a local porosity at the particle/matrix interface, such that free surface of particles within the pores may be in contact with ambient air, and present a two-layer core/shell model to calculate the optical properties. These calculations also consider deviations from the optical constants of bulk matter to account for corresponding effects below about 10 nm particle size. From the good agreement between experimental results and model calculations, we conclude a peculiar particle/ambience interaction dominating the size evolution of the resonance. Because of the difference of core electron structure, the relative importance of the effects of local porosity and free surface, respectively, are different for silver and gold. For silver, the effect of the local porosity is stronger, but for gold the opposite is found.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N242f93f0228d4d6885926027283967b0
53 Nb4ddbf4165724a64ba56be7d8915ab01
54 sg:journal.1028317
55 schema:name Optical Properties of Ag and Au Nanoparticles Dispersed within the Pores of Monolithic Mesoporous Silica
56 schema:pagination 441-451
57 schema:productId N224e93d141494d6492512f36ff60ed2d
58 N8a750a5dea154f8bbd6e5e83fcfd24d1
59 Nc710f0e002f0459bb2734ce4fe39f792
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041183327
61 https://doi.org/10.1023/a:1012537817570
62 schema:sdDatePublished 2019-04-10T14:58
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Ncb863ebed4354f60af61ad04852089e8
65 schema:url http://link.springer.com/10.1023/A:1012537817570
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N224e93d141494d6492512f36ff60ed2d schema:name doi
70 schema:value 10.1023/a:1012537817570
71 rdf:type schema:PropertyValue
72 N242f93f0228d4d6885926027283967b0 schema:issueNumber 5-6
73 rdf:type schema:PublicationIssue
74 N621606d948954f4591417dba507a9400 rdf:first sg:person.015661017734.54
75 rdf:rest rdf:nil
76 N8a750a5dea154f8bbd6e5e83fcfd24d1 schema:name readcube_id
77 schema:value c42f4eced9b85f10241174219b7e6763d2d88d921e14f9435df8ce8d0353e731
78 rdf:type schema:PropertyValue
79 Na5f29d089cac4a63b086cd36a21cc3c6 rdf:first sg:person.07567050101.89
80 rdf:rest N621606d948954f4591417dba507a9400
81 Na97fcca9eb504fac9581c85483fd60c5 rdf:first sg:person.0765751545.47
82 rdf:rest Na5f29d089cac4a63b086cd36a21cc3c6
83 Nb4ddbf4165724a64ba56be7d8915ab01 schema:volumeNumber 3
84 rdf:type schema:PublicationVolume
85 Nc710f0e002f0459bb2734ce4fe39f792 schema:name dimensions_id
86 schema:value pub.1041183327
87 rdf:type schema:PropertyValue
88 Ncb863ebed4354f60af61ad04852089e8 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Ndc22a5d44484423aa10701e748cf22c1 rdf:first sg:person.01211671214.52
91 rdf:rest Na97fcca9eb504fac9581c85483fd60c5
92 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
93 schema:name Chemical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
96 schema:name Physical Chemistry (incl. Structural)
97 rdf:type schema:DefinedTerm
98 sg:journal.1028317 schema:issn 1388-0764
99 1572-896X
100 schema:name Journal of Nanoparticle Research
101 rdf:type schema:Periodical
102 sg:person.01211671214.52 schema:affiliation https://www.grid.ac/institutes/grid.467847.e
103 schema:familyName Cai
104 schema:givenName Weiping
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211671214.52
106 rdf:type schema:Person
107 sg:person.015661017734.54 schema:affiliation https://www.grid.ac/institutes/grid.467847.e
108 schema:familyName Chen
109 schema:givenName Wei
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015661017734.54
111 rdf:type schema:Person
112 sg:person.07567050101.89 schema:affiliation https://www.grid.ac/institutes/grid.9018.0
113 schema:familyName Rainer
114 schema:givenName T.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07567050101.89
116 rdf:type schema:Person
117 sg:person.0765751545.47 schema:affiliation https://www.grid.ac/institutes/grid.450270.4
118 schema:familyName Hofmeister
119 schema:givenName H.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765751545.47
121 rdf:type schema:Person
122 sg:pub.10.1007/bf00332172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009550594
123 https://doi.org/10.1007/bf00332172
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/bf01427000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046363020
126 https://doi.org/10.1007/bf01427000
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/bf01429157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015272799
129 https://doi.org/10.1007/bf01429157
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/bf01448327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026371668
132 https://doi.org/10.1007/bf01448327
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s003390050688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014570274
135 https://doi.org/10.1007/s003390050688
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s100530050189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049455127
138 https://doi.org/10.1007/s100530050189
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s100530050531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045135833
141 https://doi.org/10.1007/s100530050531
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s100530170273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016825659
144 https://doi.org/10.1007/s100530170273
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/andp.19083300302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045719821
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/andp.19524460202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049640414
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/bbpc.19810850302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017023965
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/bbpc.19840880407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037948591
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1006/jcat.1999.2604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017681430
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/0038-1098(73)90214-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003307935
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/0039-6028(84)90206-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027979878
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/0039-6028(85)90239-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030164136
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/0039-6028(93)90865-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1003144888
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0920-5861(96)00208-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031773825
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0965-9773(99)00076-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040261586
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s1075-1629(98)80013-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090145958
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s1350-4177(96)00033-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028927536
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/ja00514a052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055738590
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1051/jphyscol:1977220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056996680
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1063/1.117750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057681955
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1063/1.122566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057686723
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1063/1.124427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057688563
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1063/1.1699834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057770278
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1063/1.363983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057989952
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1080/00018737900101445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001544203
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1080/01614947408079624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015721345
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1088/0953-8984/9/34/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046317704
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevb.14.1715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521390
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevb.16.3513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060523029
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevb.33.2828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060539435
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevb.48.11317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060567147
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevb.48.18178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060568144
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevb.57.1963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060587746
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevlett.80.5105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817607
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1143/jjap.26.818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063041925
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1364/ao.24.001960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065100058
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1557/jmr.1998.0395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015034568
211 rdf:type schema:CreativeWork
212 https://doi.org/10.2307/3579465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070381860
213 rdf:type schema:CreativeWork
214 https://www.grid.ac/institutes/grid.450270.4 schema:alternateName Max Planck Institute of Microstructure Physics
215 schema:name Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120, Halle, Germany
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.467847.e schema:alternateName Institute of Solid State Physics
218 schema:name Chinese Academy of Sciences, Institute of Solid State Physics, 230031, Hefei, Anhui, P.R. China
219 Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120, Halle, Germany
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.9018.0 schema:alternateName Martin Luther University Halle-Wittenberg
222 schema:name Department of Physics, Martin-Luther University of Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06108, Halle, Germany
223 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...