Gene Selection for Cancer Classification using Support Vector Machines View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-01

AUTHORS

Isabelle Guyon, Jason Weston, Stephen Barnhill, Vladimir Vapnik

ABSTRACT

DNA micro-arrays now permit scientists to screen thousands of genes simultaneously and determine whether those genes are active, hyperactive or silent in normal or cancerous tissue. Because these new micro-array devices generate bewildering amounts of raw data, new analytical methods must be developed to sort out whether cancer tissues have distinctive signatures of gene expression over normal tissues or other types of cancer tissues. In this paper, we address the problem of selection of a small subset of genes from broad patterns of gene expression data, recorded on DNA micro-arrays. Using available training examples from cancer and normal patients, we build a classifier suitable for genetic diagnosis, as well as drug discovery. Previous attempts to address this problem select genes with correlation techniques. We propose a new method of gene selection utilizing Support Vector Machine methods based on Recursive Feature Elimination (RFE). We demonstrate experimentally that the genes selected by our techniques yield better classification performance and are biologically relevant to cancer. In contrast with the baseline method, our method eliminates gene redundancy automatically and yields better and more compact gene subsets. In patients with leukemia our method discovered 2 genes that yield zero leave-one-out error, while 64 genes are necessary for the baseline method to get the best result (one leave-one-out error). In the colon cancer database, using only 4 genes our method is 98% accurate, while the baseline method is only 86% accurate. More... »

PAGES

389-422

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1012487302797

DOI

http://dx.doi.org/10.1023/a:1012487302797

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048573168


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Savannah, Georgia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guyon", 
        "givenName": "Isabelle", 
        "id": "sg:person.014665606007.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014665606007.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Savannah, Georgia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weston", 
        "givenName": "Jason", 
        "id": "sg:person.01242545503.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242545503.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Savannah, Georgia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barnhill", 
        "givenName": "Stephen", 
        "id": "sg:person.01067224370.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067224370.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AT&T (United States)", 
          "id": "https://www.grid.ac/institutes/grid.431860.8", 
          "name": [
            "AT&T Labs, Red Bank, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vapnik", 
        "givenName": "Vladimir", 
        "id": "sg:person.012166363434.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012166363434.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.96.16.9212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002392246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.11.6428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008522490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35000501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010898206", 
          "https://doi.org/10.1038/35000501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35000501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010898206", 
          "https://doi.org/10.1038/35000501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089976698300017467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019671707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(97)00063-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020136638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007344726582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021114201", 
          "https://doi.org/10.1023/a:1007344726582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.10.906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029326163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(97)00043-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031014012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.12.6745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033514193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/130385.130401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036379424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.19.9.6355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037469955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008663629662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038382810", 
          "https://doi.org/10.1023/a:1008663629662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042995627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-5085(99)70258-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046436390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.1.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048892448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0037-86821999000100019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049962121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.271.49.31470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051588417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.6.2811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051630147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.655649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5324.393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062557408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/ijoc.10.2.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064706416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077671887", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083305296", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083366826", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-01", 
    "datePublishedReg": "2002-01-01", 
    "description": "DNA micro-arrays now permit scientists to screen thousands of genes simultaneously and determine whether those genes are active, hyperactive or silent in normal or cancerous tissue. Because these new micro-array devices generate bewildering amounts of raw data, new analytical methods must be developed to sort out whether cancer tissues have distinctive signatures of gene expression over normal tissues or other types of cancer tissues. In this paper, we address the problem of selection of a small subset of genes from broad patterns of gene expression data, recorded on DNA micro-arrays. Using available training examples from cancer and normal patients, we build a classifier suitable for genetic diagnosis, as well as drug discovery. Previous attempts to address this problem select genes with correlation techniques. We propose a new method of gene selection utilizing Support Vector Machine methods based on Recursive Feature Elimination (RFE). We demonstrate experimentally that the genes selected by our techniques yield better classification performance and are biologically relevant to cancer. In contrast with the baseline method, our method eliminates gene redundancy automatically and yields better and more compact gene subsets. In patients with leukemia our method discovered 2 genes that yield zero leave-one-out error, while 64 genes are necessary for the baseline method to get the best result (one leave-one-out error). In the colon cancer database, using only 4 genes our method is 98% accurate, while the baseline method is only 86% accurate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1012487302797", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1125588", 
        "issn": [
          "0885-6125", 
          "1573-0565"
        ], 
        "name": "Machine Learning", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "Gene Selection for Cancer Classification using Support Vector Machines", 
    "pagination": "389-422", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e76509ca09d4269bbaa1b3d93bb8a8d789fe42dbe0664b759590de7c427472f2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1012487302797"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048573168"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1012487302797", 
      "https://app.dimensions.ai/details/publication/pub.1048573168"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1012487302797"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1012487302797'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1012487302797'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1012487302797'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1012487302797'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1012487302797 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N9356802ed2de4ebd9525522f78290b65
4 schema:citation sg:pub.10.1007/bf00994018
5 sg:pub.10.1023/a:1007344726582
6 sg:pub.10.1023/a:1008663629662
7 sg:pub.10.1038/35000501
8 https://app.dimensions.ai/details/publication/pub.1077671887
9 https://app.dimensions.ai/details/publication/pub.1083305296
10 https://app.dimensions.ai/details/publication/pub.1083366826
11 https://doi.org/10.1016/s0004-3702(97)00043-x
12 https://doi.org/10.1016/s0004-3702(97)00063-5
13 https://doi.org/10.1016/s0016-5085(99)70258-1
14 https://doi.org/10.1073/pnas.95.25.14863
15 https://doi.org/10.1073/pnas.96.11.6428
16 https://doi.org/10.1073/pnas.96.12.6745
17 https://doi.org/10.1073/pnas.96.16.9212
18 https://doi.org/10.1073/pnas.96.6.2811
19 https://doi.org/10.1073/pnas.97.1.262
20 https://doi.org/10.1074/jbc.271.49.31470
21 https://doi.org/10.1093/bioinformatics/16.10.906
22 https://doi.org/10.1109/34.655649
23 https://doi.org/10.1126/science.277.5324.393
24 https://doi.org/10.1126/science.286.5439.531
25 https://doi.org/10.1128/mcb.19.9.6355
26 https://doi.org/10.1145/130385.130401
27 https://doi.org/10.1162/089976698300017467
28 https://doi.org/10.1287/ijoc.10.2.209
29 https://doi.org/10.1590/s0037-86821999000100019
30 schema:datePublished 2002-01
31 schema:datePublishedReg 2002-01-01
32 schema:description DNA micro-arrays now permit scientists to screen thousands of genes simultaneously and determine whether those genes are active, hyperactive or silent in normal or cancerous tissue. Because these new micro-array devices generate bewildering amounts of raw data, new analytical methods must be developed to sort out whether cancer tissues have distinctive signatures of gene expression over normal tissues or other types of cancer tissues. In this paper, we address the problem of selection of a small subset of genes from broad patterns of gene expression data, recorded on DNA micro-arrays. Using available training examples from cancer and normal patients, we build a classifier suitable for genetic diagnosis, as well as drug discovery. Previous attempts to address this problem select genes with correlation techniques. We propose a new method of gene selection utilizing Support Vector Machine methods based on Recursive Feature Elimination (RFE). We demonstrate experimentally that the genes selected by our techniques yield better classification performance and are biologically relevant to cancer. In contrast with the baseline method, our method eliminates gene redundancy automatically and yields better and more compact gene subsets. In patients with leukemia our method discovered 2 genes that yield zero leave-one-out error, while 64 genes are necessary for the baseline method to get the best result (one leave-one-out error). In the colon cancer database, using only 4 genes our method is 98% accurate, while the baseline method is only 86% accurate.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf Nd4de88aab5a9453080033e84d349cf76
37 Nf2464a5472c14e46abbc293ef11cd115
38 sg:journal.1125588
39 schema:name Gene Selection for Cancer Classification using Support Vector Machines
40 schema:pagination 389-422
41 schema:productId N62624e54ca404a51b6cef132a489f5af
42 N8f5041de81f14d0986f5828db70aa770
43 N9affe950cd194dc0ac46aa4261601d9a
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048573168
45 https://doi.org/10.1023/a:1012487302797
46 schema:sdDatePublished 2019-04-10T22:29
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N60cd8401befb48118e9dc14e9700caea
49 schema:url http://link.springer.com/10.1023/A:1012487302797
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N1b7c1cf9dc784800b7a83b197aa7c91b schema:name Savannah, Georgia, USA
54 rdf:type schema:Organization
55 N2550e37f4d0b4d9fa3ad5b3af22f2651 rdf:first sg:person.012166363434.68
56 rdf:rest rdf:nil
57 N60cd8401befb48118e9dc14e9700caea schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N62624e54ca404a51b6cef132a489f5af schema:name dimensions_id
60 schema:value pub.1048573168
61 rdf:type schema:PropertyValue
62 N8f5041de81f14d0986f5828db70aa770 schema:name readcube_id
63 schema:value e76509ca09d4269bbaa1b3d93bb8a8d789fe42dbe0664b759590de7c427472f2
64 rdf:type schema:PropertyValue
65 N9356802ed2de4ebd9525522f78290b65 rdf:first sg:person.014665606007.78
66 rdf:rest Nd6bcf95988dc4cbb83a52c6255710520
67 N9affe950cd194dc0ac46aa4261601d9a schema:name doi
68 schema:value 10.1023/a:1012487302797
69 rdf:type schema:PropertyValue
70 Na9ebf2413daf41888070a1df66625e28 rdf:first sg:person.01067224370.26
71 rdf:rest N2550e37f4d0b4d9fa3ad5b3af22f2651
72 Nade573bee6394b8f99a1b9ac79007200 schema:name Savannah, Georgia, USA
73 rdf:type schema:Organization
74 Nb0a65368375a4b8b8e7a7dec48e69631 schema:name Savannah, Georgia, USA
75 rdf:type schema:Organization
76 Nd4de88aab5a9453080033e84d349cf76 schema:issueNumber 1-3
77 rdf:type schema:PublicationIssue
78 Nd6bcf95988dc4cbb83a52c6255710520 rdf:first sg:person.01242545503.37
79 rdf:rest Na9ebf2413daf41888070a1df66625e28
80 Nf2464a5472c14e46abbc293ef11cd115 schema:volumeNumber 46
81 rdf:type schema:PublicationVolume
82 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
83 schema:name Biological Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
86 schema:name Genetics
87 rdf:type schema:DefinedTerm
88 sg:journal.1125588 schema:issn 0885-6125
89 1573-0565
90 schema:name Machine Learning
91 rdf:type schema:Periodical
92 sg:person.01067224370.26 schema:affiliation Nade573bee6394b8f99a1b9ac79007200
93 schema:familyName Barnhill
94 schema:givenName Stephen
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067224370.26
96 rdf:type schema:Person
97 sg:person.012166363434.68 schema:affiliation https://www.grid.ac/institutes/grid.431860.8
98 schema:familyName Vapnik
99 schema:givenName Vladimir
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012166363434.68
101 rdf:type schema:Person
102 sg:person.01242545503.37 schema:affiliation N1b7c1cf9dc784800b7a83b197aa7c91b
103 schema:familyName Weston
104 schema:givenName Jason
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242545503.37
106 rdf:type schema:Person
107 sg:person.014665606007.78 schema:affiliation Nb0a65368375a4b8b8e7a7dec48e69631
108 schema:familyName Guyon
109 schema:givenName Isabelle
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014665606007.78
111 rdf:type schema:Person
112 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
113 https://doi.org/10.1007/bf00994018
114 rdf:type schema:CreativeWork
115 sg:pub.10.1023/a:1007344726582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021114201
116 https://doi.org/10.1023/a:1007344726582
117 rdf:type schema:CreativeWork
118 sg:pub.10.1023/a:1008663629662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038382810
119 https://doi.org/10.1023/a:1008663629662
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/35000501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010898206
122 https://doi.org/10.1038/35000501
123 rdf:type schema:CreativeWork
124 https://app.dimensions.ai/details/publication/pub.1077671887 schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1083305296 schema:CreativeWork
126 https://app.dimensions.ai/details/publication/pub.1083366826 schema:CreativeWork
127 https://doi.org/10.1016/s0004-3702(97)00043-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031014012
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0004-3702(97)00063-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020136638
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0016-5085(99)70258-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046436390
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1073/pnas.96.11.6428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008522490
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1073/pnas.96.12.6745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033514193
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1073/pnas.96.16.9212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002392246
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1073/pnas.96.6.2811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051630147
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1073/pnas.97.1.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048892448
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1074/jbc.271.49.31470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051588417
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1093/bioinformatics/16.10.906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029326163
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/34.655649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156726
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1126/science.277.5324.393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062557408
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1126/science.286.5439.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042995627
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1128/mcb.19.9.6355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037469955
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1145/130385.130401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036379424
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1162/089976698300017467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019671707
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1287/ijoc.10.2.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064706416
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1590/s0037-86821999000100019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049962121
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.431860.8 schema:alternateName AT&T (United States)
166 schema:name AT&T Labs, Red Bank, New Jersey, USA
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...