Artificial Neural Network as a Novel Method to Optimize Pharmaceutical Formulations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-01

AUTHORS

Kozo Takayama, Mikito Fujikawa, Tsuneji Nagai

ABSTRACT

One of the difficulties in the quantitative approach to designing pharmaceutical formulations is the difficulty in understanding the relationship between causal factors and individual pharmaceutical responses. Another difficulty is desirable formulation for one property is not always desirable for the other characteristics. This is called a multi-objective simultaneous optimization problem. A response surface method (RSM) has proven to be a useful approach for selecting pharmaceutical formulations. However, prediction of pharmaceutical responses based on the second-order polynomial equation commonly used in RSM, is often limited to low levels, resulting in poor estimations of optimal formulations. The aim of this review is to describe the basic concept of the multi-objective simultaneous optimization technique in which an artificial neural network (ANN) is incorporated. ANNs are being increasingly used in pharmaceutical research to predict the non-linear relationship between causal factors and response variables. The usefulness and reliability of this ANN approach is demonstrated by the optimization for ketoprofen hydrogel ointment as a typical numerical example, in comparison with the results obtained with a classical RSM approach. More... »

PAGES

1-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1011986823850

DOI

http://dx.doi.org/10.1023/a:1011986823850

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007767460

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9950271


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chemistry, Pharmaceutical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogels", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ketoprofen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks, Computer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nonlinear Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ointments", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, 142-8501, Shina-gawa-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412239.f", 
          "name": [
            "Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, 142-8501, Shina-gawa-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takayama", 
        "givenName": "Kozo", 
        "id": "sg:person.0774557773.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774557773.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, 142-8501, Shina-gawa-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412239.f", 
          "name": [
            "Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, 142-8501, Shina-gawa-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fujikawa", 
        "givenName": "Mikito", 
        "id": "sg:person.01027115253.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027115253.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, 142-8501, Shina-gawa-ku, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412239.f", 
          "name": [
            "Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, 142-8501, Shina-gawa-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagai", 
        "givenName": "Tsuneji", 
        "id": "sg:person.01236353151.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236353151.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02551274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023250347", 
          "https://doi.org/10.1007/bf02551274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015843527138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002628904", 
          "https://doi.org/10.1023/a:1015843527138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016064930502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021003482", 
          "https://doi.org/10.1023/a:1016064930502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018966222807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042859520", 
          "https://doi.org/10.1023/a:1018966222807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1018917128684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028417432", 
          "https://doi.org/10.1023/a:1018917128684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016260720218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000414328", 
          "https://doi.org/10.1023/a:1016260720218"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-01", 
    "datePublishedReg": "1999-01-01", 
    "description": "One of the difficulties in the quantitative approach to designing pharmaceutical formulations is the difficulty in understanding the relationship between causal factors and individual pharmaceutical responses. Another difficulty is desirable formulation for one property is not always desirable for the other characteristics. This is called a multi-objective simultaneous optimization problem. A response surface method (RSM) has proven to be a useful approach for selecting pharmaceutical formulations. However, prediction of pharmaceutical responses based on the second-order polynomial equation commonly used in RSM, is often limited to low levels, resulting in poor estimations of optimal formulations. The aim of this review is to describe the basic concept of the multi-objective simultaneous optimization technique in which an artificial neural network (ANN) is incorporated. ANNs are being increasingly used in pharmaceutical research to predict the non-linear relationship between causal factors and response variables. The usefulness and reliability of this ANN approach is demonstrated by the optimization for ketoprofen hydrogel ointment as a typical numerical example, in comparison with the results obtained with a classical RSM approach.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1011986823850", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094644", 
        "issn": [
          "0724-8741", 
          "1573-904X"
        ], 
        "name": "Pharmaceutical Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "response surface method", 
      "typical numerical examples", 
      "simultaneous optimization problem", 
      "optimization problem", 
      "artificial neural network", 
      "numerical examples", 
      "optimization techniques", 
      "simultaneous optimization technique", 
      "polynomial equation", 
      "second-order polynomial equation", 
      "neural network", 
      "response variables", 
      "surface method", 
      "poor estimation", 
      "formulation", 
      "desirable formulation", 
      "basic concepts", 
      "multi-objective simultaneous optimization technique", 
      "equations", 
      "RSM approach", 
      "ANN approach", 
      "non-linear relationship", 
      "optimization", 
      "approach", 
      "estimation", 
      "network", 
      "problem", 
      "pharmaceutical formulations", 
      "novel method", 
      "prediction", 
      "variables", 
      "properties", 
      "difficulties", 
      "optimal formulation", 
      "quantitative approach", 
      "useful approach", 
      "technique", 
      "reliability", 
      "concept", 
      "results", 
      "comparison", 
      "pharmaceutical research", 
      "usefulness", 
      "characteristics", 
      "pharmaceutical responses", 
      "relationship", 
      "method", 
      "response", 
      "research", 
      "factors", 
      "aim", 
      "levels", 
      "example", 
      "review", 
      "causal factors", 
      "low levels", 
      "ointment"
    ], 
    "name": "Artificial Neural Network as a Novel Method to Optimize Pharmaceutical Formulations", 
    "pagination": "1-6", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007767460"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1011986823850"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9950271"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1011986823850", 
      "https://app.dimensions.ai/details/publication/pub.1007767460"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_347.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1011986823850"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1011986823850'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1011986823850'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1011986823850'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1011986823850'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      96 URIs      82 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1011986823850 schema:about N13b57e416d024694abbd8c76748251fc
2 N56560804b59d4f60ac5c6d17ebb0cdb4
3 N64a8c419b0344e4db898850c4818083c
4 N70c93bbb5260472b806c383355744fb1
5 N748e8c9b0c1f4a9b8e7bcfffe09112d7
6 N78f9ffa664e74ffd98c113429ce70114
7 Nc0343f4691524a85b3e0a3421188d479
8 anzsrc-for:11
9 anzsrc-for:1115
10 schema:author N648daa5798874a73828e412298dabd0b
11 schema:citation sg:pub.10.1007/bf02551274
12 sg:pub.10.1023/a:1015843527138
13 sg:pub.10.1023/a:1016064930502
14 sg:pub.10.1023/a:1016260720218
15 sg:pub.10.1023/a:1018917128684
16 sg:pub.10.1023/a:1018966222807
17 schema:datePublished 1999-01
18 schema:datePublishedReg 1999-01-01
19 schema:description One of the difficulties in the quantitative approach to designing pharmaceutical formulations is the difficulty in understanding the relationship between causal factors and individual pharmaceutical responses. Another difficulty is desirable formulation for one property is not always desirable for the other characteristics. This is called a multi-objective simultaneous optimization problem. A response surface method (RSM) has proven to be a useful approach for selecting pharmaceutical formulations. However, prediction of pharmaceutical responses based on the second-order polynomial equation commonly used in RSM, is often limited to low levels, resulting in poor estimations of optimal formulations. The aim of this review is to describe the basic concept of the multi-objective simultaneous optimization technique in which an artificial neural network (ANN) is incorporated. ANNs are being increasingly used in pharmaceutical research to predict the non-linear relationship between causal factors and response variables. The usefulness and reliability of this ANN approach is demonstrated by the optimization for ketoprofen hydrogel ointment as a typical numerical example, in comparison with the results obtained with a classical RSM approach.
20 schema:genre article
21 schema:isAccessibleForFree false
22 schema:isPartOf N21d6a9620d804c08a478beb079248a23
23 Na018a8406f9a44efb45778351627e8db
24 sg:journal.1094644
25 schema:keywords ANN approach
26 RSM approach
27 aim
28 approach
29 artificial neural network
30 basic concepts
31 causal factors
32 characteristics
33 comparison
34 concept
35 desirable formulation
36 difficulties
37 equations
38 estimation
39 example
40 factors
41 formulation
42 levels
43 low levels
44 method
45 multi-objective simultaneous optimization technique
46 network
47 neural network
48 non-linear relationship
49 novel method
50 numerical examples
51 ointment
52 optimal formulation
53 optimization
54 optimization problem
55 optimization techniques
56 pharmaceutical formulations
57 pharmaceutical research
58 pharmaceutical responses
59 polynomial equation
60 poor estimation
61 prediction
62 problem
63 properties
64 quantitative approach
65 relationship
66 reliability
67 research
68 response
69 response surface method
70 response variables
71 results
72 review
73 second-order polynomial equation
74 simultaneous optimization problem
75 simultaneous optimization technique
76 surface method
77 technique
78 typical numerical examples
79 useful approach
80 usefulness
81 variables
82 schema:name Artificial Neural Network as a Novel Method to Optimize Pharmaceutical Formulations
83 schema:pagination 1-6
84 schema:productId N2dcb7d5925e94e2c8a03ced08bce7038
85 N80f6128bbe674dcbb1acc25f34caf6c7
86 N82ac2af7dc0946c89a89a5d0f686537a
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007767460
88 https://doi.org/10.1023/a:1011986823850
89 schema:sdDatePublished 2022-08-04T16:54
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher Nc4e27ec1b8b342cba12a22ffe772b333
92 schema:url https://doi.org/10.1023/a:1011986823850
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N13b57e416d024694abbd8c76748251fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Reproducibility of Results
98 rdf:type schema:DefinedTerm
99 N21d6a9620d804c08a478beb079248a23 schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N2dcb7d5925e94e2c8a03ced08bce7038 schema:name dimensions_id
102 schema:value pub.1007767460
103 rdf:type schema:PropertyValue
104 N31d32ec2608b4478a41e208ea50204ab rdf:first sg:person.01027115253.63
105 rdf:rest N62c3a18f8e354d909dcd7bbe0c53d41a
106 N56560804b59d4f60ac5c6d17ebb0cdb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Nonlinear Dynamics
108 rdf:type schema:DefinedTerm
109 N62c3a18f8e354d909dcd7bbe0c53d41a rdf:first sg:person.01236353151.72
110 rdf:rest rdf:nil
111 N648daa5798874a73828e412298dabd0b rdf:first sg:person.0774557773.42
112 rdf:rest N31d32ec2608b4478a41e208ea50204ab
113 N64a8c419b0344e4db898850c4818083c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Hydrogels
115 rdf:type schema:DefinedTerm
116 N70c93bbb5260472b806c383355744fb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Ointments
118 rdf:type schema:DefinedTerm
119 N748e8c9b0c1f4a9b8e7bcfffe09112d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Neural Networks, Computer
121 rdf:type schema:DefinedTerm
122 N78f9ffa664e74ffd98c113429ce70114 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Chemistry, Pharmaceutical
124 rdf:type schema:DefinedTerm
125 N80f6128bbe674dcbb1acc25f34caf6c7 schema:name doi
126 schema:value 10.1023/a:1011986823850
127 rdf:type schema:PropertyValue
128 N82ac2af7dc0946c89a89a5d0f686537a schema:name pubmed_id
129 schema:value 9950271
130 rdf:type schema:PropertyValue
131 Na018a8406f9a44efb45778351627e8db schema:volumeNumber 16
132 rdf:type schema:PublicationVolume
133 Nc0343f4691524a85b3e0a3421188d479 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Ketoprofen
135 rdf:type schema:DefinedTerm
136 Nc4e27ec1b8b342cba12a22ffe772b333 schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
139 schema:name Medical and Health Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
142 schema:name Pharmacology and Pharmaceutical Sciences
143 rdf:type schema:DefinedTerm
144 sg:journal.1094644 schema:issn 0724-8741
145 1573-904X
146 schema:name Pharmaceutical Research
147 schema:publisher Springer Nature
148 rdf:type schema:Periodical
149 sg:person.01027115253.63 schema:affiliation grid-institutes:grid.412239.f
150 schema:familyName Fujikawa
151 schema:givenName Mikito
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027115253.63
153 rdf:type schema:Person
154 sg:person.01236353151.72 schema:affiliation grid-institutes:grid.412239.f
155 schema:familyName Nagai
156 schema:givenName Tsuneji
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236353151.72
158 rdf:type schema:Person
159 sg:person.0774557773.42 schema:affiliation grid-institutes:grid.412239.f
160 schema:familyName Takayama
161 schema:givenName Kozo
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774557773.42
163 rdf:type schema:Person
164 sg:pub.10.1007/bf02551274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023250347
165 https://doi.org/10.1007/bf02551274
166 rdf:type schema:CreativeWork
167 sg:pub.10.1023/a:1015843527138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002628904
168 https://doi.org/10.1023/a:1015843527138
169 rdf:type schema:CreativeWork
170 sg:pub.10.1023/a:1016064930502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021003482
171 https://doi.org/10.1023/a:1016064930502
172 rdf:type schema:CreativeWork
173 sg:pub.10.1023/a:1016260720218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000414328
174 https://doi.org/10.1023/a:1016260720218
175 rdf:type schema:CreativeWork
176 sg:pub.10.1023/a:1018917128684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028417432
177 https://doi.org/10.1023/a:1018917128684
178 rdf:type schema:CreativeWork
179 sg:pub.10.1023/a:1018966222807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042859520
180 https://doi.org/10.1023/a:1018966222807
181 rdf:type schema:CreativeWork
182 grid-institutes:grid.412239.f schema:alternateName Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, 142-8501, Shina-gawa-ku, Tokyo, Japan
183 schema:name Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, 142-8501, Shina-gawa-ku, Tokyo, Japan
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...