Effects of Initial Phenol-formaldehyde (PF) Reaction Products on the Curing Properties of PF Resin View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-05

AUTHORS

L. Y. Tonge, J. Hodgkin, A. S. Blicblau, P. J. Collins

ABSTRACT

Differential scanning calorimetry(DSC) was used to study the effects of varying NaOH concentrations on the thermochemical curing properties of 2,4-dimethylol phenol (2,4-DMP), and 2,6-dimethylol phenol(2,6-DMP). Analysis of the DSC curves showed significant differences in the thermochemical curing behavior of these compounds with increasing NaOH:DMP molar ratios, in terms of the peak shape, position of the reaction peaks, (Tp), along the temperature scale and energy of activation, E. The curves consisted of either a single, two or three exothermic peaks which indicated the occurrence of multiple reactions. One of these peaks was observed for the entire range of NaOH molar ratios, and is attributed to the self-condensation reaction. For the 2,4-DMP, NaOH had the effect of lowering the Tp of curing from 212°C in the uncatalyzed state to135°C between 0.15–0.75 molar ratios. The lowest value of E, however, was 111 kJ mole−1, only through 0.45–0.60 molar ratios and this combined with the above, points to this concentration range as the optimum NaOH level. Similarly, the Tp of curing for the 2,6-DMP was lowered from 211°C in the uncatalyzed state, to a minimum of 116°C at the NaOH:2,6-DMP molar ratio of 0.45. At this ratio, Ealso had the lowest value of 117 kJ mole−1 and this suggests that 0.45 molar ratio is the optimum NaOH level. More... »

PAGES

721-730

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1011544411747

DOI

http://dx.doi.org/10.1023/a:1011544411747

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010825720


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swinburne University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.1027.4", 
          "name": [
            "School of Engineering and Science, Swinburne University of Technology, PO Box 218, 3122, Hawthorn, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tonge", 
        "givenName": "L. Y.", 
        "id": "sg:person.014611343477.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014611343477.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science & Engineering", 
          "id": "https://www.grid.ac/institutes/grid.417654.5", 
          "name": [
            "CSIRO Molecular Science, Private Bag 10, 3169, Clayton South MDC, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hodgkin", 
        "givenName": "J.", 
        "id": "sg:person.014516420531.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014516420531.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swinburne University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.1027.4", 
          "name": [
            "School of Engineering and Science, Swinburne University of Technology, PO Box 218, 3122, Hawthorn, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blicblau", 
        "givenName": "A. S.", 
        "id": "sg:person.013660566057.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660566057.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science & Engineering", 
          "id": "https://www.grid.ac/institutes/grid.417654.5", 
          "name": [
            "CSIRO Molecular Science, Private Bag 10, 3169, Clayton South MDC, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Collins", 
        "givenName": "P. J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0032-3861(94)90418-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000876196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(94)90418-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000876196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/app.1985.070300601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001889418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/app.1974.070180412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025269785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(96)87276-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026996489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-3057(74)90117-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027616058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-3057(74)90117-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027616058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/macp.1969.021250112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031152924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0032-3861(98)00816-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033752404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/macp.1962.020550106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035445018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(96)87277-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036003040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/app.1990.070410118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040996275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010158507360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047257451", 
          "https://doi.org/10.1023/a:1010158507360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/macp.1968.021190102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049347152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01144a030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055773020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01161a029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055776289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01176a097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055778880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01637a014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055815203"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-05", 
    "datePublishedReg": "2001-05-01", 
    "description": "Differential scanning calorimetry(DSC) was used to study the effects of varying NaOH concentrations on the thermochemical curing properties of 2,4-dimethylol phenol (2,4-DMP), and 2,6-dimethylol phenol(2,6-DMP). Analysis of the DSC curves showed significant differences in the thermochemical curing behavior of these compounds with increasing NaOH:DMP molar ratios, in terms of the peak shape, position of the reaction peaks, (Tp), along the temperature scale and energy of activation, E. The curves consisted of either a single, two or three exothermic peaks which indicated the occurrence of multiple reactions. One of these peaks was observed for the entire range of NaOH molar ratios, and is attributed to the self-condensation reaction. For the 2,4-DMP, NaOH had the effect of lowering the Tp of curing from 212\u00b0C in the uncatalyzed state to135\u00b0C between 0.15\u20130.75 molar ratios. The lowest value of E, however, was 111 kJ mole\u22121, only through 0.45\u20130.60 molar ratios and this combined with the above, points to this concentration range as the optimum NaOH level. Similarly, the Tp of curing for the 2,6-DMP was lowered from 211\u00b0C in the uncatalyzed state, to a minimum of 116\u00b0C at the NaOH:2,6-DMP molar ratio of 0.45. At this ratio, Ealso had the lowest value of 117 kJ mole\u22121 and this suggests that 0.45 molar ratio is the optimum NaOH level.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1011544411747", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294862", 
        "issn": [
          "1388-6150", 
          "1572-8943"
        ], 
        "name": "Journal of Thermal Analysis and Calorimetry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "64"
      }
    ], 
    "name": "Effects of Initial Phenol-formaldehyde (PF) Reaction Products on the Curing Properties of PF Resin", 
    "pagination": "721-730", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3393279047a3f449b984209a6970641c9016c491c25b2c6075717be982c4acda"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1011544411747"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010825720"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1011544411747", 
      "https://app.dimensions.ai/details/publication/pub.1010825720"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1011544411747"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1011544411747'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1011544411747'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1011544411747'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1011544411747'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1011544411747 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N0c40241957464bfdb102eca43654cfa5
4 schema:citation sg:pub.10.1023/a:1010158507360
5 https://doi.org/10.1002/app.1974.070180412
6 https://doi.org/10.1002/app.1985.070300601
7 https://doi.org/10.1002/app.1990.070410118
8 https://doi.org/10.1002/macp.1962.020550106
9 https://doi.org/10.1002/macp.1968.021190102
10 https://doi.org/10.1002/macp.1969.021250112
11 https://doi.org/10.1016/0014-3057(74)90117-7
12 https://doi.org/10.1016/0032-3861(94)90418-9
13 https://doi.org/10.1016/0032-3861(96)87276-4
14 https://doi.org/10.1016/0032-3861(96)87277-6
15 https://doi.org/10.1016/s0032-3861(98)00816-7
16 https://doi.org/10.1021/ja01144a030
17 https://doi.org/10.1021/ja01161a029
18 https://doi.org/10.1021/ja01176a097
19 https://doi.org/10.1021/ja01637a014
20 schema:datePublished 2001-05
21 schema:datePublishedReg 2001-05-01
22 schema:description Differential scanning calorimetry(DSC) was used to study the effects of varying NaOH concentrations on the thermochemical curing properties of 2,4-dimethylol phenol (2,4-DMP), and 2,6-dimethylol phenol(2,6-DMP). Analysis of the DSC curves showed significant differences in the thermochemical curing behavior of these compounds with increasing NaOH:DMP molar ratios, in terms of the peak shape, position of the reaction peaks, (Tp), along the temperature scale and energy of activation, E. The curves consisted of either a single, two or three exothermic peaks which indicated the occurrence of multiple reactions. One of these peaks was observed for the entire range of NaOH molar ratios, and is attributed to the self-condensation reaction. For the 2,4-DMP, NaOH had the effect of lowering the Tp of curing from 212°C in the uncatalyzed state to135°C between 0.15–0.75 molar ratios. The lowest value of E, however, was 111 kJ mole−1, only through 0.45–0.60 molar ratios and this combined with the above, points to this concentration range as the optimum NaOH level. Similarly, the Tp of curing for the 2,6-DMP was lowered from 211°C in the uncatalyzed state, to a minimum of 116°C at the NaOH:2,6-DMP molar ratio of 0.45. At this ratio, Ealso had the lowest value of 117 kJ mole−1 and this suggests that 0.45 molar ratio is the optimum NaOH level.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N0bf2f095c5914a76a2e84fa58adb9a0e
27 Nd9b767b52add41d29c85804e6cda0263
28 sg:journal.1294862
29 schema:name Effects of Initial Phenol-formaldehyde (PF) Reaction Products on the Curing Properties of PF Resin
30 schema:pagination 721-730
31 schema:productId N08850e9bb4714deca3dc26dd5026ac4d
32 N17ceef9c98d3491eba09db9aa2d05e4f
33 Nf16bdd6947f24a64a764c072e7b8a4e5
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010825720
35 https://doi.org/10.1023/a:1011544411747
36 schema:sdDatePublished 2019-04-10T15:48
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N0edf211faacf49b79f81c1f4c670fe10
39 schema:url http://link.springer.com/10.1023/A:1011544411747
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N08850e9bb4714deca3dc26dd5026ac4d schema:name dimensions_id
44 schema:value pub.1010825720
45 rdf:type schema:PropertyValue
46 N0bf2f095c5914a76a2e84fa58adb9a0e schema:issueNumber 2
47 rdf:type schema:PublicationIssue
48 N0c40241957464bfdb102eca43654cfa5 rdf:first sg:person.014611343477.53
49 rdf:rest Nffae63d54dde4470b255e8b04941ddaa
50 N0edf211faacf49b79f81c1f4c670fe10 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N1023a000c0a34f0d8f35b8a496b942f4 schema:affiliation https://www.grid.ac/institutes/grid.417654.5
53 schema:familyName Collins
54 schema:givenName P. J.
55 rdf:type schema:Person
56 N17ceef9c98d3491eba09db9aa2d05e4f schema:name readcube_id
57 schema:value 3393279047a3f449b984209a6970641c9016c491c25b2c6075717be982c4acda
58 rdf:type schema:PropertyValue
59 N57c81fe04b704f959dde9fe2f2bae887 rdf:first N1023a000c0a34f0d8f35b8a496b942f4
60 rdf:rest rdf:nil
61 N96daf60922a64036a62d06c8b7075ad8 rdf:first sg:person.013660566057.80
62 rdf:rest N57c81fe04b704f959dde9fe2f2bae887
63 Nd9b767b52add41d29c85804e6cda0263 schema:volumeNumber 64
64 rdf:type schema:PublicationVolume
65 Nf16bdd6947f24a64a764c072e7b8a4e5 schema:name doi
66 schema:value 10.1023/a:1011544411747
67 rdf:type schema:PropertyValue
68 Nffae63d54dde4470b255e8b04941ddaa rdf:first sg:person.014516420531.35
69 rdf:rest N96daf60922a64036a62d06c8b7075ad8
70 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
71 schema:name Chemical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Chemistry (incl. Structural)
75 rdf:type schema:DefinedTerm
76 sg:journal.1294862 schema:issn 1388-6150
77 1572-8943
78 schema:name Journal of Thermal Analysis and Calorimetry
79 rdf:type schema:Periodical
80 sg:person.013660566057.80 schema:affiliation https://www.grid.ac/institutes/grid.1027.4
81 schema:familyName Blicblau
82 schema:givenName A. S.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013660566057.80
84 rdf:type schema:Person
85 sg:person.014516420531.35 schema:affiliation https://www.grid.ac/institutes/grid.417654.5
86 schema:familyName Hodgkin
87 schema:givenName J.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014516420531.35
89 rdf:type schema:Person
90 sg:person.014611343477.53 schema:affiliation https://www.grid.ac/institutes/grid.1027.4
91 schema:familyName Tonge
92 schema:givenName L. Y.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014611343477.53
94 rdf:type schema:Person
95 sg:pub.10.1023/a:1010158507360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047257451
96 https://doi.org/10.1023/a:1010158507360
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1002/app.1974.070180412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025269785
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/app.1985.070300601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001889418
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1002/app.1990.070410118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040996275
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/macp.1962.020550106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035445018
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/macp.1968.021190102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049347152
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/macp.1969.021250112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031152924
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0014-3057(74)90117-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027616058
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0032-3861(94)90418-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000876196
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0032-3861(96)87276-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026996489
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0032-3861(96)87277-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036003040
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/s0032-3861(98)00816-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033752404
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1021/ja01144a030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055773020
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1021/ja01161a029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055776289
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1021/ja01176a097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055778880
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/ja01637a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055815203
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.1027.4 schema:alternateName Swinburne University of Technology
129 schema:name School of Engineering and Science, Swinburne University of Technology, PO Box 218, 3122, Hawthorn, Victoria, Australia
130 rdf:type schema:Organization
131 https://www.grid.ac/institutes/grid.417654.5 schema:alternateName Materials Science & Engineering
132 schema:name CSIRO Molecular Science, Private Bag 10, 3169, Clayton South MDC, Victoria, Australia
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...