An elliptic problem with integral constraints with application to large-scale geophysical flows View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-12

AUTHORS

A.J. Meir, Irad Yavneh

ABSTRACT

We present a weak formulation of a non-standard elliptic equation whose boundary values are determined in part by integral relations. Existence and uniqueness of its solution are proved, and a finite element discretization is described, analyzed, and implemented on a test problem. The equation is a generalization of one that is solved during integration of the three-dimensional Quasigeostrophic equations, which model large-scale rotating stratified flows, where the integral constraints represent conservation of physical properties. More... »

PAGES

337-346

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1011514606314

DOI

http://dx.doi.org/10.1023/a:1011514606314

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033164319


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0499", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Auburn University, 36849-5310, Auburn, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.252546.2", 
          "name": [
            "Department of Mathematics, Auburn University, 36849-5310, Auburn, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meir", 
        "givenName": "A.J.", 
        "id": "sg:person.01202366534.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202366534.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Technion \u2013 Israel Institute of Technology, 32000, Haifa, Israel", 
          "id": "http://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Department of Computer Science, Technion \u2013 Israel Institute of Technology, 32000, Haifa, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yavneh", 
        "givenName": "Irad", 
        "id": "sg:person.010313750263.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010313750263.62"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-12", 
    "datePublishedReg": "1998-12-01", 
    "description": "We present a weak formulation of a non-standard elliptic equation whose boundary values are determined in part by integral relations. Existence and uniqueness of its solution are proved, and a finite element discretization is described, analyzed, and implemented on a test problem. The equation is a generalization of one that is solved during integration of the three-dimensional Quasigeostrophic equations, which model large-scale rotating stratified flows, where the integral constraints represent conservation of physical properties.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1011514606314", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1270275", 
        "issn": [
          "1420-0597", 
          "1573-1499"
        ], 
        "name": "Computational Geosciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "integral constraints", 
      "finite element discretization", 
      "elliptic equations", 
      "generalization of one", 
      "elliptic problems", 
      "quasigeostrophic equations", 
      "element discretization", 
      "test problems", 
      "weak formulation", 
      "boundary values", 
      "equations", 
      "integral relations", 
      "constraints", 
      "problem", 
      "discretization", 
      "uniqueness", 
      "stratified flow", 
      "generalization", 
      "formulation", 
      "solution", 
      "existence", 
      "applications", 
      "flow", 
      "integration", 
      "one", 
      "properties", 
      "values", 
      "relation", 
      "conservation", 
      "physical properties", 
      "part", 
      "non-standard elliptic equation", 
      "three-dimensional Quasigeostrophic equations", 
      "large-scale rotating stratified flows", 
      "rotating stratified flows"
    ], 
    "name": "An elliptic problem with integral constraints with application to large-scale geophysical flows", 
    "pagination": "337-346", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033164319"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1011514606314"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1011514606314", 
      "https://app.dimensions.ai/details/publication/pub.1033164319"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_272.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1011514606314"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1011514606314'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1011514606314'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1011514606314'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1011514606314'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      21 PREDICATES      61 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1011514606314 schema:about anzsrc-for:04
2 anzsrc-for:0499
3 schema:author N8c817cc479784522bb592e5e139e97f2
4 schema:datePublished 1998-12
5 schema:datePublishedReg 1998-12-01
6 schema:description We present a weak formulation of a non-standard elliptic equation whose boundary values are determined in part by integral relations. Existence and uniqueness of its solution are proved, and a finite element discretization is described, analyzed, and implemented on a test problem. The equation is a generalization of one that is solved during integration of the three-dimensional Quasigeostrophic equations, which model large-scale rotating stratified flows, where the integral constraints represent conservation of physical properties.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N0e88fb17919d41b2a0ed17981794cd55
11 N70bb4d9b179f4f9a94c8d3367657ea72
12 sg:journal.1270275
13 schema:keywords applications
14 boundary values
15 conservation
16 constraints
17 discretization
18 element discretization
19 elliptic equations
20 elliptic problems
21 equations
22 existence
23 finite element discretization
24 flow
25 formulation
26 generalization
27 generalization of one
28 integral constraints
29 integral relations
30 integration
31 large-scale rotating stratified flows
32 non-standard elliptic equation
33 one
34 part
35 physical properties
36 problem
37 properties
38 quasigeostrophic equations
39 relation
40 rotating stratified flows
41 solution
42 stratified flow
43 test problems
44 three-dimensional Quasigeostrophic equations
45 uniqueness
46 values
47 weak formulation
48 schema:name An elliptic problem with integral constraints with application to large-scale geophysical flows
49 schema:pagination 337-346
50 schema:productId N48ed9495d2e64e27a1f582f327cd2b97
51 N64ff98c50ecf4aa8a30996d9b73efcc8
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033164319
53 https://doi.org/10.1023/a:1011514606314
54 schema:sdDatePublished 2021-12-01T19:09
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N12303ab5777c464dab9b712c4edad11b
57 schema:url https://doi.org/10.1023/a:1011514606314
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N0e88fb17919d41b2a0ed17981794cd55 schema:issueNumber 4
62 rdf:type schema:PublicationIssue
63 N12303ab5777c464dab9b712c4edad11b schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N48ed9495d2e64e27a1f582f327cd2b97 schema:name doi
66 schema:value 10.1023/a:1011514606314
67 rdf:type schema:PropertyValue
68 N64ff98c50ecf4aa8a30996d9b73efcc8 schema:name dimensions_id
69 schema:value pub.1033164319
70 rdf:type schema:PropertyValue
71 N70bb4d9b179f4f9a94c8d3367657ea72 schema:volumeNumber 2
72 rdf:type schema:PublicationVolume
73 N8055e39bde584d8386e525094617de4e rdf:first sg:person.010313750263.62
74 rdf:rest rdf:nil
75 N8c817cc479784522bb592e5e139e97f2 rdf:first sg:person.01202366534.74
76 rdf:rest N8055e39bde584d8386e525094617de4e
77 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
78 schema:name Earth Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0499 schema:inDefinedTermSet anzsrc-for:
81 schema:name Other Earth Sciences
82 rdf:type schema:DefinedTerm
83 sg:journal.1270275 schema:issn 1420-0597
84 1573-1499
85 schema:name Computational Geosciences
86 schema:publisher Springer Nature
87 rdf:type schema:Periodical
88 sg:person.010313750263.62 schema:affiliation grid-institutes:grid.6451.6
89 schema:familyName Yavneh
90 schema:givenName Irad
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010313750263.62
92 rdf:type schema:Person
93 sg:person.01202366534.74 schema:affiliation grid-institutes:grid.252546.2
94 schema:familyName Meir
95 schema:givenName A.J.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202366534.74
97 rdf:type schema:Person
98 grid-institutes:grid.252546.2 schema:alternateName Department of Mathematics, Auburn University, 36849-5310, Auburn, AL, USA
99 schema:name Department of Mathematics, Auburn University, 36849-5310, Auburn, AL, USA
100 rdf:type schema:Organization
101 grid-institutes:grid.6451.6 schema:alternateName Department of Computer Science, Technion – Israel Institute of Technology, 32000, Haifa, Israel
102 schema:name Department of Computer Science, Technion – Israel Institute of Technology, 32000, Haifa, Israel
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...