Capillarity-Induced Surface Morphologies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-04

AUTHORS

W.W. Mullins

ABSTRACT

Surface energetics is reviewed including expressions for the chemical potential of a curved surface element and the Legendre transform relation between the projected surface free energy as a function of orientation and the Wulff equilibrium shape. A well known equation is derived describing surface evolution by surface diffusion, assuming local equilibrium. Solutions are reviewed including a decaying sinusoid and a developing thermal groove. Breakdown of local equilibrium is considered. The structure, energetics and dynamics of steps on a vicinal surface are discussed. Facet sizes on the Wulff shape and the surface profile at the edge of a facet are related to the step self and interaction free energies respectively. Fourier analysis of step fluctuations is described, revealing the underlying transport processes. Analysis of the decay of a sinusoidal profile on a vicinal surface in terms of step behavior is given. Finally, examples are reviewed of surface evolution below the roughening temperature TR in which case facets move by the lateral spreading of steps. Results differ greatly from those of the continuum theory applicable above TR. More... »

PAGES

9-20

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1011258510496

DOI

http://dx.doi.org/10.1023/a:1011258510496

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024584646


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Department of Materials Science and Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mullins", 
        "givenName": "W.W.", 
        "id": "sg:person.013517176323.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517176323.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/jmr.1990.0151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003742920", 
          "https://doi.org/10.1557/jmr.1990.0151"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-04", 
    "datePublishedReg": "2001-04-01", 
    "description": "Surface energetics is reviewed including expressions for the chemical potential of a curved surface element and the Legendre transform relation between the projected surface free energy as a function of orientation and the Wulff equilibrium shape. A well known equation is derived describing surface evolution by surface diffusion, assuming local equilibrium. Solutions are reviewed including a decaying sinusoid and a developing thermal groove. Breakdown of local equilibrium is considered. The structure, energetics and dynamics of steps on a vicinal surface are discussed. Facet sizes on the Wulff shape and the surface profile at the edge of a facet are related to the step self and interaction free energies respectively. Fourier analysis of step fluctuations is described, revealing the underlying transport processes. Analysis of the decay of a sinusoidal profile on a vicinal surface in terms of step behavior is given. Finally, examples are reviewed of surface evolution below the roughening temperature TR in which case facets move by the lateral spreading of steps. Results differ greatly from those of the continuum theory applicable above TR.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1011258510496", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1141575", 
        "issn": [
          "0927-7056", 
          "1573-2746"
        ], 
        "name": "Interface Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "surface free energy", 
      "free energy", 
      "surface energetics", 
      "surface morphology", 
      "chemical potential", 
      "Wulff equilibrium shape", 
      "surface evolution", 
      "surface diffusion", 
      "dynamics of steps", 
      "vicinal surfaces", 
      "energetics", 
      "function of orientation", 
      "local equilibrium", 
      "equilibrium", 
      "surface", 
      "facet size", 
      "Wulff shape", 
      "step self", 
      "transport processes", 
      "surface elements", 
      "energy", 
      "equilibrium shape", 
      "solution", 
      "step", 
      "temperature TR", 
      "morphology", 
      "shape", 
      "diffusion", 
      "structure", 
      "facets", 
      "expression", 
      "potential", 
      "orientation", 
      "evolution", 
      "groove", 
      "size", 
      "surface profile", 
      "analysis", 
      "step fluctuations", 
      "process", 
      "step behavior", 
      "behavior", 
      "continuum theory", 
      "function", 
      "dynamics", 
      "profile", 
      "edge", 
      "decay", 
      "example", 
      "TR", 
      "spreading", 
      "results", 
      "elements", 
      "equations", 
      "breakdown", 
      "self", 
      "terms", 
      "theory", 
      "relation", 
      "thermal grooves", 
      "Fourier analysis", 
      "fluctuations", 
      "sinusoidal profile", 
      "roughening temperature TR", 
      "lateral spreading", 
      "sinusoids", 
      "transform relation", 
      "Legendre transform relation", 
      "case facets", 
      "Capillarity-Induced Surface Morphologies"
    ], 
    "name": "Capillarity-Induced Surface Morphologies", 
    "pagination": "9-20", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024584646"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1011258510496"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1011258510496", 
      "https://app.dimensions.ai/details/publication/pub.1024584646"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_334.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1011258510496"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1011258510496'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1011258510496'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1011258510496'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1011258510496'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      22 PREDICATES      96 URIs      87 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1011258510496 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N4e1d15070e4443aaadf397a1de321122
4 schema:citation sg:pub.10.1557/jmr.1990.0151
5 schema:datePublished 2001-04
6 schema:datePublishedReg 2001-04-01
7 schema:description Surface energetics is reviewed including expressions for the chemical potential of a curved surface element and the Legendre transform relation between the projected surface free energy as a function of orientation and the Wulff equilibrium shape. A well known equation is derived describing surface evolution by surface diffusion, assuming local equilibrium. Solutions are reviewed including a decaying sinusoid and a developing thermal groove. Breakdown of local equilibrium is considered. The structure, energetics and dynamics of steps on a vicinal surface are discussed. Facet sizes on the Wulff shape and the surface profile at the edge of a facet are related to the step self and interaction free energies respectively. Fourier analysis of step fluctuations is described, revealing the underlying transport processes. Analysis of the decay of a sinusoidal profile on a vicinal surface in terms of step behavior is given. Finally, examples are reviewed of surface evolution below the roughening temperature TR in which case facets move by the lateral spreading of steps. Results differ greatly from those of the continuum theory applicable above TR.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1a9a8ebf15364d2cb71b23a95949e366
12 N4ff077d4cd3348299443c0ec966aeb34
13 sg:journal.1141575
14 schema:keywords Capillarity-Induced Surface Morphologies
15 Fourier analysis
16 Legendre transform relation
17 TR
18 Wulff equilibrium shape
19 Wulff shape
20 analysis
21 behavior
22 breakdown
23 case facets
24 chemical potential
25 continuum theory
26 decay
27 diffusion
28 dynamics
29 dynamics of steps
30 edge
31 elements
32 energetics
33 energy
34 equations
35 equilibrium
36 equilibrium shape
37 evolution
38 example
39 expression
40 facet size
41 facets
42 fluctuations
43 free energy
44 function
45 function of orientation
46 groove
47 lateral spreading
48 local equilibrium
49 morphology
50 orientation
51 potential
52 process
53 profile
54 relation
55 results
56 roughening temperature TR
57 self
58 shape
59 sinusoidal profile
60 sinusoids
61 size
62 solution
63 spreading
64 step
65 step behavior
66 step fluctuations
67 step self
68 structure
69 surface
70 surface diffusion
71 surface elements
72 surface energetics
73 surface evolution
74 surface free energy
75 surface morphology
76 surface profile
77 temperature TR
78 terms
79 theory
80 thermal grooves
81 transform relation
82 transport processes
83 vicinal surfaces
84 schema:name Capillarity-Induced Surface Morphologies
85 schema:pagination 9-20
86 schema:productId N1e86018981ca403fbd86708eb741051d
87 N36041ef51ebb49a99e5b6bc441b45f4a
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024584646
89 https://doi.org/10.1023/a:1011258510496
90 schema:sdDatePublished 2022-01-01T18:10
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher Nd89724ba3ea94f5186ec660059dc2664
93 schema:url https://doi.org/10.1023/a:1011258510496
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N1a9a8ebf15364d2cb71b23a95949e366 schema:issueNumber 1-2
98 rdf:type schema:PublicationIssue
99 N1e86018981ca403fbd86708eb741051d schema:name dimensions_id
100 schema:value pub.1024584646
101 rdf:type schema:PropertyValue
102 N36041ef51ebb49a99e5b6bc441b45f4a schema:name doi
103 schema:value 10.1023/a:1011258510496
104 rdf:type schema:PropertyValue
105 N4e1d15070e4443aaadf397a1de321122 rdf:first sg:person.013517176323.92
106 rdf:rest rdf:nil
107 N4ff077d4cd3348299443c0ec966aeb34 schema:volumeNumber 9
108 rdf:type schema:PublicationVolume
109 Nd89724ba3ea94f5186ec660059dc2664 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
112 schema:name Chemical Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
115 schema:name Physical Chemistry (incl. Structural)
116 rdf:type schema:DefinedTerm
117 sg:journal.1141575 schema:issn 0927-7056
118 1573-2746
119 schema:name Interface Science
120 schema:publisher Springer Nature
121 rdf:type schema:Periodical
122 sg:person.013517176323.92 schema:affiliation grid-institutes:grid.147455.6
123 schema:familyName Mullins
124 schema:givenName W.W.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517176323.92
126 rdf:type schema:Person
127 sg:pub.10.1557/jmr.1990.0151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003742920
128 https://doi.org/10.1557/jmr.1990.0151
129 rdf:type schema:CreativeWork
130 grid-institutes:grid.147455.6 schema:alternateName Department of Materials Science and Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA
131 schema:name Department of Materials Science and Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...