Contour and Texture Analysis for Image Segmentation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-06

AUTHORS

Jitendra Malik, Serge Belongie, Thomas Leung, Jianbo Shi

ABSTRACT

This paper provides an algorithm for partitioning grayscale images into disjoint regions of coherent brightness and texture. Natural images contain both textured and untextured regions, so the cues of contour and texture differences are exploited simultaneously. Contours are treated in the intervening contour framework, while texture is analyzed using textons. Each of these cues has a domain of applicability, so to facilitate cue combination we introduce a gating operator based on the texturedness of the neighborhood at a pixel. Having obtained a local measure of how likely two nearby pixels are to belong to the same region, we use the spectral graph theoretic framework of normalized cuts to find partitions of the image into regions of coherent texture and brightness. Experimental results on a wide range of images are shown. More... »

PAGES

7-27

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1011174803800

DOI

http://dx.doi.org/10.1023/a:1011174803800

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034375628


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malik", 
        "givenName": "Jitendra", 
        "id": "sg:person.01364521761.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364521761.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belongie", 
        "givenName": "Serge", 
        "id": "sg:person.0632735744.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632735744.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leung", 
        "givenName": "Thomas", 
        "id": "sg:person.016034550437.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034550437.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Jianbo", 
        "id": "sg:person.016214030753.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016214030753.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00318371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003867987", 
          "https://doi.org/10.1007/bf00318371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00364136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015252645", 
          "https://doi.org/10.1007/bf00364136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0015553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036506217", 
          "https://doi.org/10.1007/bfb0015553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00204594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017610398", 
          "https://doi.org/10.1007/bf00204594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0055702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010796465", 
          "https://doi.org/10.1007/bfb0055702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/290091a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040887630", 
          "https://doi.org/10.1038/290091a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0055689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047873554", 
          "https://doi.org/10.1007/bfb0055689"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-06", 
    "datePublishedReg": "2001-06-01", 
    "description": "This paper provides an algorithm for partitioning grayscale images into disjoint regions of coherent brightness and texture. Natural images contain both textured and untextured regions, so the cues of contour and texture differences are exploited simultaneously. Contours are treated in the intervening contour framework, while texture is analyzed using textons. Each of these cues has a domain of applicability, so to facilitate cue combination we introduce a gating operator based on the texturedness of the neighborhood at a pixel. Having obtained a local measure of how likely two nearby pixels are to belong to the same region, we use the spectral graph theoretic framework of normalized cuts to find partitions of the image into regions of coherent texture and brightness. Experimental results on a wide range of images are shown.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1011174803800", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1032807", 
        "issn": [
          "0920-5691", 
          "1573-1405"
        ], 
        "name": "International Journal of Computer Vision", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "keywords": [
      "grayscale images", 
      "spectral graph theoretic framework", 
      "graph-theoretic framework", 
      "image segmentation", 
      "disjoint regions", 
      "natural images", 
      "untextured regions", 
      "nearby pixels", 
      "theoretic framework", 
      "images", 
      "texture differences", 
      "pixels", 
      "experimental results", 
      "texture analysis", 
      "framework", 
      "domain of applicability", 
      "algorithm", 
      "textons", 
      "coherent texture", 
      "segmentation", 
      "texture", 
      "contours", 
      "operators", 
      "partition", 
      "domain", 
      "applicability", 
      "cue combination", 
      "texturedness", 
      "local measures", 
      "wide range", 
      "brightness", 
      "cues", 
      "neighborhood", 
      "results", 
      "combination", 
      "measures", 
      "cut", 
      "analysis", 
      "region", 
      "same region", 
      "range", 
      "differences", 
      "paper"
    ], 
    "name": "Contour and Texture Analysis for Image Segmentation", 
    "pagination": "7-27", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034375628"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1011174803800"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1011174803800", 
      "https://app.dimensions.ai/details/publication/pub.1034375628"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_311.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1011174803800"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1011174803800'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1011174803800'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1011174803800'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1011174803800'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      75 URIs      60 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1011174803800 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd8585c9ae17f483c97a55631aa4c8c24
4 schema:citation sg:pub.10.1007/bf00204594
5 sg:pub.10.1007/bf00318371
6 sg:pub.10.1007/bf00364136
7 sg:pub.10.1007/bfb0015553
8 sg:pub.10.1007/bfb0055689
9 sg:pub.10.1007/bfb0055702
10 sg:pub.10.1038/290091a0
11 schema:datePublished 2001-06
12 schema:datePublishedReg 2001-06-01
13 schema:description This paper provides an algorithm for partitioning grayscale images into disjoint regions of coherent brightness and texture. Natural images contain both textured and untextured regions, so the cues of contour and texture differences are exploited simultaneously. Contours are treated in the intervening contour framework, while texture is analyzed using textons. Each of these cues has a domain of applicability, so to facilitate cue combination we introduce a gating operator based on the texturedness of the neighborhood at a pixel. Having obtained a local measure of how likely two nearby pixels are to belong to the same region, we use the spectral graph theoretic framework of normalized cuts to find partitions of the image into regions of coherent texture and brightness. Experimental results on a wide range of images are shown.
14 schema:genre article
15 schema:isAccessibleForFree false
16 schema:isPartOf N4ce5fde61bb44934863efef1da6a1647
17 N8d813791f7484a609369edf1d7ca37ed
18 sg:journal.1032807
19 schema:keywords algorithm
20 analysis
21 applicability
22 brightness
23 coherent texture
24 combination
25 contours
26 cue combination
27 cues
28 cut
29 differences
30 disjoint regions
31 domain
32 domain of applicability
33 experimental results
34 framework
35 graph-theoretic framework
36 grayscale images
37 image segmentation
38 images
39 local measures
40 measures
41 natural images
42 nearby pixels
43 neighborhood
44 operators
45 paper
46 partition
47 pixels
48 range
49 region
50 results
51 same region
52 segmentation
53 spectral graph theoretic framework
54 textons
55 texture
56 texture analysis
57 texture differences
58 texturedness
59 theoretic framework
60 untextured regions
61 wide range
62 schema:name Contour and Texture Analysis for Image Segmentation
63 schema:pagination 7-27
64 schema:productId N376d8222e1de4009927b7680b8d7b0c0
65 N69e91b3613284a49b9446c3f645d3463
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034375628
67 https://doi.org/10.1023/a:1011174803800
68 schema:sdDatePublished 2022-12-01T06:22
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N2a49702751074f858bb9b8b8301042f4
71 schema:url https://doi.org/10.1023/a:1011174803800
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N2a49702751074f858bb9b8b8301042f4 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N376d8222e1de4009927b7680b8d7b0c0 schema:name dimensions_id
78 schema:value pub.1034375628
79 rdf:type schema:PropertyValue
80 N3a3fabcca3eb439680efd1a70e594d0b rdf:first sg:person.0632735744.68
81 rdf:rest Nb9f7792d49ae491eba2d5f5339c257cf
82 N4ce5fde61bb44934863efef1da6a1647 schema:volumeNumber 43
83 rdf:type schema:PublicationVolume
84 N69e91b3613284a49b9446c3f645d3463 schema:name doi
85 schema:value 10.1023/a:1011174803800
86 rdf:type schema:PropertyValue
87 N729de50ab187455e9965a0413224d0cc rdf:first sg:person.016214030753.30
88 rdf:rest rdf:nil
89 N8d813791f7484a609369edf1d7ca37ed schema:issueNumber 1
90 rdf:type schema:PublicationIssue
91 Nb9f7792d49ae491eba2d5f5339c257cf rdf:first sg:person.016034550437.98
92 rdf:rest N729de50ab187455e9965a0413224d0cc
93 Nd8585c9ae17f483c97a55631aa4c8c24 rdf:first sg:person.01364521761.84
94 rdf:rest N3a3fabcca3eb439680efd1a70e594d0b
95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
96 schema:name Information and Computing Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
99 schema:name Artificial Intelligence and Image Processing
100 rdf:type schema:DefinedTerm
101 sg:journal.1032807 schema:issn 0920-5691
102 1573-1405
103 schema:name International Journal of Computer Vision
104 schema:publisher Springer Nature
105 rdf:type schema:Periodical
106 sg:person.01364521761.84 schema:affiliation grid-institutes:grid.47840.3f
107 schema:familyName Malik
108 schema:givenName Jitendra
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364521761.84
110 rdf:type schema:Person
111 sg:person.016034550437.98 schema:affiliation grid-institutes:grid.47840.3f
112 schema:familyName Leung
113 schema:givenName Thomas
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034550437.98
115 rdf:type schema:Person
116 sg:person.016214030753.30 schema:affiliation grid-institutes:grid.47840.3f
117 schema:familyName Shi
118 schema:givenName Jianbo
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016214030753.30
120 rdf:type schema:Person
121 sg:person.0632735744.68 schema:affiliation grid-institutes:grid.47840.3f
122 schema:familyName Belongie
123 schema:givenName Serge
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632735744.68
125 rdf:type schema:Person
126 sg:pub.10.1007/bf00204594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017610398
127 https://doi.org/10.1007/bf00204594
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf00318371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003867987
130 https://doi.org/10.1007/bf00318371
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf00364136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015252645
133 https://doi.org/10.1007/bf00364136
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bfb0015553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036506217
136 https://doi.org/10.1007/bfb0015553
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/bfb0055689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047873554
139 https://doi.org/10.1007/bfb0055689
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/bfb0055702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010796465
142 https://doi.org/10.1007/bfb0055702
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/290091a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040887630
145 https://doi.org/10.1038/290091a0
146 rdf:type schema:CreativeWork
147 grid-institutes:grid.47840.3f schema:alternateName Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA
148 schema:name Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...