Feigenbaum Scenario Exhibited by Thin Plate Dynamics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-04

AUTHORS

J. Awrejcewicz, V. A. Krysko

ABSTRACT

The dimensionless partial differential equations governing thedynamics of a thin flexible isotropic plate with an external load arederived and investigated. The period doubling bifurcations, as well asthe chaotic dynamics, are detected and analyzed. The algorithms leadingto the reduction of the original equations to those of a difference setof ordinary differential and algebraic equations are proposed, comparedto other known methods, and then applied to the problem.Among others, it is shown that, in spite of the system complexity, theFeigenbaum scenario exhibited by one-dimensional maps also governs theroute to chaos in the continuous system under consideration. More... »

PAGES

373-398

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1011133223520

DOI

http://dx.doi.org/10.1023/a:1011133223520

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002170452


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Automatics and Biomechanics, Technical University of \u0141\u00f3d\u017a, Stefanowskiego 1/15, 90-924, \u0141\u00f3d\u017a, Poland", 
          "id": "http://www.grid.ac/institutes/grid.412284.9", 
          "name": [
            "Department of Automatics and Biomechanics, Technical University of \u0141\u00f3d\u017a, Stefanowskiego 1/15, 90-924, \u0141\u00f3d\u017a, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Awrejcewicz", 
        "givenName": "J.", 
        "id": "sg:person.012103132446.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Saratov State University, 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Department of Mathematics, Saratov State University, 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "V. A.", 
        "id": "sg:person.015167266033.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00426995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041500959", 
          "https://doi.org/10.1007/bf00426995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-79329-5_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050971877", 
          "https://doi.org/10.1007/978-3-642-79329-5_10"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-04", 
    "datePublishedReg": "2001-04-01", 
    "description": "The dimensionless partial differential equations governing thedynamics of a thin flexible isotropic plate with an external load arederived and investigated. The period doubling bifurcations, as well asthe chaotic dynamics, are detected and analyzed. The algorithms leadingto the reduction of the original equations to those of a difference setof ordinary differential and algebraic equations are proposed, comparedto other known methods, and then applied to the problem.Among others, it is shown that, in spite of the system complexity, theFeigenbaum scenario exhibited by one-dimensional maps also governs theroute to chaos in the continuous system under consideration.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1011133223520", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "dimensionless partial differential equations", 
      "partial differential equations", 
      "one-dimensional maps", 
      "algebraic equations", 
      "differential equations", 
      "original equation", 
      "chaotic dynamics", 
      "Feigenbaum scenario", 
      "continuous system", 
      "plate dynamics", 
      "equations", 
      "isotropic plates", 
      "system complexity", 
      "dynamics", 
      "thedynamics", 
      "bifurcation", 
      "algorithm", 
      "problem", 
      "external load", 
      "complexity", 
      "setof", 
      "scenarios", 
      "system", 
      "maps", 
      "consideration", 
      "load", 
      "plate", 
      "reduction", 
      "spite", 
      "period", 
      "method", 
      "thin flexible isotropic plate", 
      "flexible isotropic plate", 
      "asthe chaotic dynamics", 
      "difference setof", 
      "theFeigenbaum scenario", 
      "theroute", 
      "Thin Plate Dynamics"
    ], 
    "name": "Feigenbaum Scenario Exhibited by Thin Plate Dynamics", 
    "pagination": "373-398", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002170452"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1011133223520"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1011133223520", 
      "https://app.dimensions.ai/details/publication/pub.1002170452"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_309.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1011133223520"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1011133223520'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1011133223520'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1011133223520'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1011133223520'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      22 PREDICATES      66 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1011133223520 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb613e5caddae4888ae64a117f4bfcbe7
4 schema:citation sg:pub.10.1007/978-3-642-79329-5_10
5 sg:pub.10.1007/bf00426995
6 schema:datePublished 2001-04
7 schema:datePublishedReg 2001-04-01
8 schema:description The dimensionless partial differential equations governing thedynamics of a thin flexible isotropic plate with an external load arederived and investigated. The period doubling bifurcations, as well asthe chaotic dynamics, are detected and analyzed. The algorithms leadingto the reduction of the original equations to those of a difference setof ordinary differential and algebraic equations are proposed, comparedto other known methods, and then applied to the problem.Among others, it is shown that, in spite of the system complexity, theFeigenbaum scenario exhibited by one-dimensional maps also governs theroute to chaos in the continuous system under consideration.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N1dcff199536045c9b109b6e4c50e5c95
13 Nac4de67fbaba4d499f5d47c64ef18af1
14 sg:journal.1040905
15 schema:keywords Feigenbaum scenario
16 Thin Plate Dynamics
17 algebraic equations
18 algorithm
19 asthe chaotic dynamics
20 bifurcation
21 chaotic dynamics
22 complexity
23 consideration
24 continuous system
25 difference setof
26 differential equations
27 dimensionless partial differential equations
28 dynamics
29 equations
30 external load
31 flexible isotropic plate
32 isotropic plates
33 load
34 maps
35 method
36 one-dimensional maps
37 original equation
38 partial differential equations
39 period
40 plate
41 plate dynamics
42 problem
43 reduction
44 scenarios
45 setof
46 spite
47 system
48 system complexity
49 theFeigenbaum scenario
50 thedynamics
51 theroute
52 thin flexible isotropic plate
53 schema:name Feigenbaum Scenario Exhibited by Thin Plate Dynamics
54 schema:pagination 373-398
55 schema:productId N094f2ad1e4f7457cb39de0fa45cfaf3d
56 Nca66283c06c54713876d8c83eb4b2607
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170452
58 https://doi.org/10.1023/a:1011133223520
59 schema:sdDatePublished 2022-01-01T18:09
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nd3c95611f6a94d3b86c04bdb94b4b155
62 schema:url https://doi.org/10.1023/a:1011133223520
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N05dd97a865d24c359a07cf4f5ee8930a rdf:first sg:person.015167266033.92
67 rdf:rest rdf:nil
68 N094f2ad1e4f7457cb39de0fa45cfaf3d schema:name dimensions_id
69 schema:value pub.1002170452
70 rdf:type schema:PropertyValue
71 N1dcff199536045c9b109b6e4c50e5c95 schema:issueNumber 4
72 rdf:type schema:PublicationIssue
73 Nac4de67fbaba4d499f5d47c64ef18af1 schema:volumeNumber 24
74 rdf:type schema:PublicationVolume
75 Nb613e5caddae4888ae64a117f4bfcbe7 rdf:first sg:person.012103132446.89
76 rdf:rest N05dd97a865d24c359a07cf4f5ee8930a
77 Nca66283c06c54713876d8c83eb4b2607 schema:name doi
78 schema:value 10.1023/a:1011133223520
79 rdf:type schema:PropertyValue
80 Nd3c95611f6a94d3b86c04bdb94b4b155 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
83 schema:name Mathematical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
86 schema:name Pure Mathematics
87 rdf:type schema:DefinedTerm
88 sg:journal.1040905 schema:issn 0924-090X
89 1573-269X
90 schema:name Nonlinear Dynamics
91 schema:publisher Springer Nature
92 rdf:type schema:Periodical
93 sg:person.012103132446.89 schema:affiliation grid-institutes:grid.412284.9
94 schema:familyName Awrejcewicz
95 schema:givenName J.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89
97 rdf:type schema:Person
98 sg:person.015167266033.92 schema:affiliation grid-institutes:grid.446088.6
99 schema:familyName Krysko
100 schema:givenName V. A.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92
102 rdf:type schema:Person
103 sg:pub.10.1007/978-3-642-79329-5_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050971877
104 https://doi.org/10.1007/978-3-642-79329-5_10
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf00426995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041500959
107 https://doi.org/10.1007/bf00426995
108 rdf:type schema:CreativeWork
109 grid-institutes:grid.412284.9 schema:alternateName Department of Automatics and Biomechanics, Technical University of Łódź, Stefanowskiego 1/15, 90-924, Łódź, Poland
110 schema:name Department of Automatics and Biomechanics, Technical University of Łódź, Stefanowskiego 1/15, 90-924, Łódź, Poland
111 rdf:type schema:Organization
112 grid-institutes:grid.446088.6 schema:alternateName Department of Mathematics, Saratov State University, 410054, Saratov, Russia
113 schema:name Department of Mathematics, Saratov State University, 410054, Saratov, Russia
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...