Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-06

AUTHORS

Thomas Leung, Jitendra Malik

ABSTRACT

We study the recognition of surfaces made from different materials such as concrete, rug, marble, or leather on the basis of their textural appearance. Such natural textures arise from spatial variation of two surface attributes: (1) reflectance and (2) surface normal. In this paper, we provide a unified model to address both these aspects of natural texture. The main idea is to construct a vocabulary of prototype tiny surface patches with associated local geometric and photometric properties. We call these 3D textons. Examples might be ridges, grooves, spots or stripes or combinations thereof. Associated with each texton is an appearance vector, which characterizes the local irradiance distribution, represented as a set of linear Gaussian derivative filter outputs, under different lighting and viewing conditions. Given a large collection of images of different materials, a clustering approach is used to acquire a small (on the order of 100) 3D texton vocabulary. Given a few (1 to 4) images of any material, it can be characterized using these textons. We demonstrate the application of this representation for recognition of the material viewed under novel lighting and viewing conditions. We also illustrate how the 3D texton model can be used to predict the appearance of materials under novel conditions. More... »

PAGES

29-44

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1011126920638

DOI

http://dx.doi.org/10.1023/a:1011126920638

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046312359


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leung", 
        "givenName": "Thomas", 
        "id": "sg:person.016034550437.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034550437.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malik", 
        "givenName": "Jitendra", 
        "id": "sg:person.01364521761.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364521761.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0031-3203(91)90143-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000127145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(91)90143-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000127145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007925832420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005653889", 
          "https://doi.org/10.1023/a:1007925832420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/713820338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006707659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00204594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017610398", 
          "https://doi.org/10.1007/bf00204594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00204594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017610398", 
          "https://doi.org/10.1007/bf00204594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01421486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020275860", 
          "https://doi.org/10.1007/bf01421486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01421486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020275860", 
          "https://doi.org/10.1007/bf01421486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bs.3830120210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020292180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(92)90099-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027002452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(92)90099-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027002452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007975506780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029643449", 
          "https://doi.org/10.1023/a:1007975506780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/218380.218446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029683430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0262-8856(92)90015-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034033370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0262-8856(92)90015-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034033370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/290091a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040887630", 
          "https://doi.org/10.1038/290091a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008061730969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042600859", 
          "https://doi.org/10.1023/a:1008061730969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/300776.300778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043167095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/jocn.1991.3.1.71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043225769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008005721484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051637698", 
          "https://doi.org/10.1023/a:1008005721484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1985.1164641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061519688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcom.1983.1095851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061553685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1962.1057766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061645866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1983.4767341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061741924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.1984.4767596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.37.000130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065112833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.13.000452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065157855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.4.000519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065165455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.7.000923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065166332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1998.698669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093327753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.1998.710724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093785861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1998.698587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094209481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.1999.790346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094669207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.1999.790379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094736069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1997.609420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094925176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.1999.790389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095097644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.1999.790380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095113179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.1999.790383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095367750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1997.609331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095636871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/cp:19950763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098686208"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-06", 
    "datePublishedReg": "2001-06-01", 
    "description": "We study the recognition of surfaces made from different materials such as concrete, rug, marble, or leather on the basis of their textural appearance. Such natural textures arise from spatial variation of two surface attributes: (1) reflectance and (2) surface normal. In this paper, we provide a unified model to address both these aspects of natural texture. The main idea is to construct a vocabulary of prototype tiny surface patches with associated local geometric and photometric properties. We call these 3D textons. Examples might be ridges, grooves, spots or stripes or combinations thereof. Associated with each texton is an appearance vector, which characterizes the local irradiance distribution, represented as a set of linear Gaussian derivative filter outputs, under different lighting and viewing conditions. Given a large collection of images of different materials, a clustering approach is used to acquire a small (on the order of 100) 3D texton vocabulary. Given a few (1 to 4) images of any material, it can be characterized using these textons. We demonstrate the application of this representation for recognition of the material viewed under novel lighting and viewing conditions. We also illustrate how the 3D texton model can be used to predict the appearance of materials under novel conditions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1011126920638", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1032807", 
        "issn": [
          "0920-5691", 
          "1573-1405"
        ], 
        "name": "International Journal of Computer Vision", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "name": "Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons", 
    "pagination": "29-44", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dc9c65a57e2c2fd58c35c25d774326464756d46cad8d4239db27067b81f61f86"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1011126920638"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046312359"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1011126920638", 
      "https://app.dimensions.ai/details/publication/pub.1046312359"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1011126920638"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1011126920638'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1011126920638'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1011126920638'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1011126920638'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1011126920638 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N6c8abca0a1cd41bc8abe719417976d31
4 schema:citation sg:pub.10.1007/bf00204594
5 sg:pub.10.1007/bf01421486
6 sg:pub.10.1023/a:1007925832420
7 sg:pub.10.1023/a:1007975506780
8 sg:pub.10.1023/a:1008005721484
9 sg:pub.10.1023/a:1008061730969
10 sg:pub.10.1038/290091a0
11 https://doi.org/10.1002/bs.3830120210
12 https://doi.org/10.1016/0031-3203(91)90143-s
13 https://doi.org/10.1016/0031-3203(92)90099-5
14 https://doi.org/10.1016/0262-8856(92)90015-u
15 https://doi.org/10.1049/cp:19950763
16 https://doi.org/10.1080/713820338
17 https://doi.org/10.1109/cvpr.1997.609331
18 https://doi.org/10.1109/cvpr.1997.609420
19 https://doi.org/10.1109/cvpr.1998.698587
20 https://doi.org/10.1109/cvpr.1998.698669
21 https://doi.org/10.1109/iccv.1998.710724
22 https://doi.org/10.1109/iccv.1999.790346
23 https://doi.org/10.1109/iccv.1999.790379
24 https://doi.org/10.1109/iccv.1999.790380
25 https://doi.org/10.1109/iccv.1999.790383
26 https://doi.org/10.1109/iccv.1999.790389
27 https://doi.org/10.1109/tassp.1985.1164641
28 https://doi.org/10.1109/tcom.1983.1095851
29 https://doi.org/10.1109/tit.1962.1057766
30 https://doi.org/10.1109/tpami.1983.4767341
31 https://doi.org/10.1109/tpami.1984.4767596
32 https://doi.org/10.1145/218380.218446
33 https://doi.org/10.1145/300776.300778
34 https://doi.org/10.1162/jocn.1991.3.1.71
35 https://doi.org/10.1364/ao.37.000130
36 https://doi.org/10.1364/josaa.13.000452
37 https://doi.org/10.1364/josaa.4.000519
38 https://doi.org/10.1364/josaa.7.000923
39 schema:datePublished 2001-06
40 schema:datePublishedReg 2001-06-01
41 schema:description We study the recognition of surfaces made from different materials such as concrete, rug, marble, or leather on the basis of their textural appearance. Such natural textures arise from spatial variation of two surface attributes: (1) reflectance and (2) surface normal. In this paper, we provide a unified model to address both these aspects of natural texture. The main idea is to construct a vocabulary of prototype tiny surface patches with associated local geometric and photometric properties. We call these 3D textons. Examples might be ridges, grooves, spots or stripes or combinations thereof. Associated with each texton is an appearance vector, which characterizes the local irradiance distribution, represented as a set of linear Gaussian derivative filter outputs, under different lighting and viewing conditions. Given a large collection of images of different materials, a clustering approach is used to acquire a small (on the order of 100) 3D texton vocabulary. Given a few (1 to 4) images of any material, it can be characterized using these textons. We demonstrate the application of this representation for recognition of the material viewed under novel lighting and viewing conditions. We also illustrate how the 3D texton model can be used to predict the appearance of materials under novel conditions.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N93d0adddb8974a8bae5fcdf7c8c925b6
46 Nffe73a770b7240879132842bfcebc776
47 sg:journal.1032807
48 schema:name Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons
49 schema:pagination 29-44
50 schema:productId N26a66ed4fa794ca7a2109495424363bc
51 N348d5f49b0dd4e96a2145ca11cc38f41
52 Nc98cfb51ae2d4e55894d3c096c97952f
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046312359
54 https://doi.org/10.1023/a:1011126920638
55 schema:sdDatePublished 2019-04-10T21:34
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N7bff781869cd49cdb50559e0fda8ef2d
58 schema:url http://link.springer.com/10.1023/A:1011126920638
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N26a66ed4fa794ca7a2109495424363bc schema:name doi
63 schema:value 10.1023/a:1011126920638
64 rdf:type schema:PropertyValue
65 N348d5f49b0dd4e96a2145ca11cc38f41 schema:name dimensions_id
66 schema:value pub.1046312359
67 rdf:type schema:PropertyValue
68 N6c8abca0a1cd41bc8abe719417976d31 rdf:first sg:person.016034550437.98
69 rdf:rest N76a7a65e00ba4e9aa0d27057f140ebe1
70 N76a7a65e00ba4e9aa0d27057f140ebe1 rdf:first sg:person.01364521761.84
71 rdf:rest rdf:nil
72 N7bff781869cd49cdb50559e0fda8ef2d schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N93d0adddb8974a8bae5fcdf7c8c925b6 schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 Nc98cfb51ae2d4e55894d3c096c97952f schema:name readcube_id
77 schema:value dc9c65a57e2c2fd58c35c25d774326464756d46cad8d4239db27067b81f61f86
78 rdf:type schema:PropertyValue
79 Nffe73a770b7240879132842bfcebc776 schema:volumeNumber 43
80 rdf:type schema:PublicationVolume
81 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
82 schema:name Engineering
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
85 schema:name Materials Engineering
86 rdf:type schema:DefinedTerm
87 sg:journal.1032807 schema:issn 0920-5691
88 1573-1405
89 schema:name International Journal of Computer Vision
90 rdf:type schema:Periodical
91 sg:person.01364521761.84 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
92 schema:familyName Malik
93 schema:givenName Jitendra
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364521761.84
95 rdf:type schema:Person
96 sg:person.016034550437.98 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
97 schema:familyName Leung
98 schema:givenName Thomas
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034550437.98
100 rdf:type schema:Person
101 sg:pub.10.1007/bf00204594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017610398
102 https://doi.org/10.1007/bf00204594
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf01421486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020275860
105 https://doi.org/10.1007/bf01421486
106 rdf:type schema:CreativeWork
107 sg:pub.10.1023/a:1007925832420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005653889
108 https://doi.org/10.1023/a:1007925832420
109 rdf:type schema:CreativeWork
110 sg:pub.10.1023/a:1007975506780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029643449
111 https://doi.org/10.1023/a:1007975506780
112 rdf:type schema:CreativeWork
113 sg:pub.10.1023/a:1008005721484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051637698
114 https://doi.org/10.1023/a:1008005721484
115 rdf:type schema:CreativeWork
116 sg:pub.10.1023/a:1008061730969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042600859
117 https://doi.org/10.1023/a:1008061730969
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/290091a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040887630
120 https://doi.org/10.1038/290091a0
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/bs.3830120210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020292180
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0031-3203(91)90143-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1000127145
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0031-3203(92)90099-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027002452
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0262-8856(92)90015-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1034033370
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1049/cp:19950763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098686208
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1080/713820338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006707659
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/cvpr.1997.609331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095636871
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/cvpr.1997.609420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094925176
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/cvpr.1998.698587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094209481
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/cvpr.1998.698669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093327753
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/iccv.1998.710724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093785861
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/iccv.1999.790346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094669207
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/iccv.1999.790379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094736069
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/iccv.1999.790380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095113179
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/iccv.1999.790383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095367750
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/iccv.1999.790389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095097644
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tassp.1985.1164641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061519688
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/tcom.1983.1095851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061553685
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tit.1962.1057766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061645866
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/tpami.1983.4767341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061741924
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/tpami.1984.4767596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742090
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1145/218380.218446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029683430
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1145/300776.300778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043167095
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1162/jocn.1991.3.1.71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043225769
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1364/ao.37.000130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065112833
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1364/josaa.13.000452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065157855
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1364/josaa.4.000519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065165455
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1364/josaa.7.000923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065166332
177 rdf:type schema:CreativeWork
178 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
179 schema:name Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...