Ontology type: schema:ScholarlyArticle
2001-06
AUTHORS ABSTRACTWe study the recognition of surfaces made from different materials such as concrete, rug, marble, or leather on the basis of their textural appearance. Such natural textures arise from spatial variation of two surface attributes: (1) reflectance and (2) surface normal. In this paper, we provide a unified model to address both these aspects of natural texture. The main idea is to construct a vocabulary of prototype tiny surface patches with associated local geometric and photometric properties. We call these 3D textons. Examples might be ridges, grooves, spots or stripes or combinations thereof. Associated with each texton is an appearance vector, which characterizes the local irradiance distribution, represented as a set of linear Gaussian derivative filter outputs, under different lighting and viewing conditions.Given a large collection of images of different materials, a clustering approach is used to acquire a small (on the order of 100) 3D texton vocabulary. Given a few (1 to 4) images of any material, it can be characterized using these textons. We demonstrate the application of this representation for recognition of the material viewed under novel lighting and viewing conditions. We also illustrate how the 3D texton model can be used to predict the appearance of materials under novel conditions. More... »
PAGES29-44
http://scigraph.springernature.com/pub.10.1023/a:1011126920638
DOIhttp://dx.doi.org/10.1023/a:1011126920638
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1046312359
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA",
"id": "http://www.grid.ac/institutes/grid.47840.3f",
"name": [
"Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA"
],
"type": "Organization"
},
"familyName": "Leung",
"givenName": "Thomas",
"id": "sg:person.016034550437.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034550437.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA",
"id": "http://www.grid.ac/institutes/grid.47840.3f",
"name": [
"Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA"
],
"type": "Organization"
},
"familyName": "Malik",
"givenName": "Jitendra",
"id": "sg:person.01364521761.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364521761.84"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01421486",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020275860",
"https://doi.org/10.1007/bf01421486"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1008005721484",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051637698",
"https://doi.org/10.1023/a:1008005721484"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1007975506780",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029643449",
"https://doi.org/10.1023/a:1007975506780"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1007925832420",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005653889",
"https://doi.org/10.1023/a:1007925832420"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/290091a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040887630",
"https://doi.org/10.1038/290091a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00204594",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017610398",
"https://doi.org/10.1007/bf00204594"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1008061730969",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042600859",
"https://doi.org/10.1023/a:1008061730969"
],
"type": "CreativeWork"
}
],
"datePublished": "2001-06",
"datePublishedReg": "2001-06-01",
"description": "We study the recognition of surfaces made from different materials such as concrete, rug, marble, or leather on the basis of their textural appearance. Such natural textures arise from spatial variation of two surface attributes: (1) reflectance and (2) surface normal. In this paper, we provide a unified model to address both these aspects of natural texture. The main idea is to construct a vocabulary of prototype tiny surface patches with associated local geometric and photometric properties. We call these 3D textons. Examples might be ridges, grooves, spots or stripes or combinations thereof. Associated with each texton is an appearance vector, which characterizes the local irradiance distribution, represented as a set of linear Gaussian derivative filter outputs, under different lighting and viewing conditions.Given a large collection of images of different materials, a clustering approach is used to acquire a small (on the order of 100) 3D texton vocabulary. Given a few (1 to 4) images of any material, it can be characterized using these textons. We demonstrate the application of this representation for recognition of the material viewed under novel lighting and viewing conditions. We also illustrate how the 3D texton model can be used to predict the appearance of materials under novel conditions.",
"genre": "article",
"id": "sg:pub.10.1023/a:1011126920638",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1032807",
"issn": [
"0920-5691",
"1573-1405"
],
"name": "International Journal of Computer Vision",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "43"
}
],
"keywords": [
"different materials",
"filter output",
"novel lighting",
"materials",
"irradiance distribution",
"recognition of surfaces",
"surface attributes",
"surface",
"appearance of materials",
"lighting",
"spatial variation",
"texture",
"surface patches",
"unified model",
"different lighting",
"conditions",
"main idea",
"reflectance",
"natural textures",
"properties",
"model",
"appearance vectors",
"applications",
"groove",
"visual appearance",
"images",
"leather",
"output",
"marble",
"stripes",
"distribution",
"variation",
"textural appearance",
"example",
"spots",
"combination",
"approach",
"novel conditions",
"photometric properties",
"ridge",
"appearance",
"vector",
"textons",
"patches",
"set",
"basis",
"aspects",
"attributes",
"representation",
"idea",
"recognition",
"rugs",
"collection",
"large collection",
"vocabulary",
"paper"
],
"name": "Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons",
"pagination": "29-44",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1046312359"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/a:1011126920638"
]
}
],
"sameAs": [
"https://doi.org/10.1023/a:1011126920638",
"https://app.dimensions.ai/details/publication/pub.1046312359"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:52",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_314.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1023/a:1011126920638"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1011126920638'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1011126920638'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1011126920638'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1011126920638'
This table displays all metadata directly associated to this object as RDF triples.
148 TRIPLES
21 PREDICATES
88 URIs
73 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1023/a:1011126920638 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | N29ad34e358f6496e8c25086535ec051a |
4 | ″ | schema:citation | sg:pub.10.1007/bf00204594 |
5 | ″ | ″ | sg:pub.10.1007/bf01421486 |
6 | ″ | ″ | sg:pub.10.1023/a:1007925832420 |
7 | ″ | ″ | sg:pub.10.1023/a:1007975506780 |
8 | ″ | ″ | sg:pub.10.1023/a:1008005721484 |
9 | ″ | ″ | sg:pub.10.1023/a:1008061730969 |
10 | ″ | ″ | sg:pub.10.1038/290091a0 |
11 | ″ | schema:datePublished | 2001-06 |
12 | ″ | schema:datePublishedReg | 2001-06-01 |
13 | ″ | schema:description | We study the recognition of surfaces made from different materials such as concrete, rug, marble, or leather on the basis of their textural appearance. Such natural textures arise from spatial variation of two surface attributes: (1) reflectance and (2) surface normal. In this paper, we provide a unified model to address both these aspects of natural texture. The main idea is to construct a vocabulary of prototype tiny surface patches with associated local geometric and photometric properties. We call these 3D textons. Examples might be ridges, grooves, spots or stripes or combinations thereof. Associated with each texton is an appearance vector, which characterizes the local irradiance distribution, represented as a set of linear Gaussian derivative filter outputs, under different lighting and viewing conditions.Given a large collection of images of different materials, a clustering approach is used to acquire a small (on the order of 100) 3D texton vocabulary. Given a few (1 to 4) images of any material, it can be characterized using these textons. We demonstrate the application of this representation for recognition of the material viewed under novel lighting and viewing conditions. We also illustrate how the 3D texton model can be used to predict the appearance of materials under novel conditions. |
14 | ″ | schema:genre | article |
15 | ″ | schema:isAccessibleForFree | false |
16 | ″ | schema:isPartOf | N7c3f64995ea741eea90f6d90b7e49e1e |
17 | ″ | ″ | Na92aa84b3f764c5bb9d1a2c1bf62963b |
18 | ″ | ″ | sg:journal.1032807 |
19 | ″ | schema:keywords | appearance |
20 | ″ | ″ | appearance of materials |
21 | ″ | ″ | appearance vectors |
22 | ″ | ″ | applications |
23 | ″ | ″ | approach |
24 | ″ | ″ | aspects |
25 | ″ | ″ | attributes |
26 | ″ | ″ | basis |
27 | ″ | ″ | collection |
28 | ″ | ″ | combination |
29 | ″ | ″ | conditions |
30 | ″ | ″ | different lighting |
31 | ″ | ″ | different materials |
32 | ″ | ″ | distribution |
33 | ″ | ″ | example |
34 | ″ | ″ | filter output |
35 | ″ | ″ | groove |
36 | ″ | ″ | idea |
37 | ″ | ″ | images |
38 | ″ | ″ | irradiance distribution |
39 | ″ | ″ | large collection |
40 | ″ | ″ | leather |
41 | ″ | ″ | lighting |
42 | ″ | ″ | main idea |
43 | ″ | ″ | marble |
44 | ″ | ″ | materials |
45 | ″ | ″ | model |
46 | ″ | ″ | natural textures |
47 | ″ | ″ | novel conditions |
48 | ″ | ″ | novel lighting |
49 | ″ | ″ | output |
50 | ″ | ″ | paper |
51 | ″ | ″ | patches |
52 | ″ | ″ | photometric properties |
53 | ″ | ″ | properties |
54 | ″ | ″ | recognition |
55 | ″ | ″ | recognition of surfaces |
56 | ″ | ″ | reflectance |
57 | ″ | ″ | representation |
58 | ″ | ″ | ridge |
59 | ″ | ″ | rugs |
60 | ″ | ″ | set |
61 | ″ | ″ | spatial variation |
62 | ″ | ″ | spots |
63 | ″ | ″ | stripes |
64 | ″ | ″ | surface |
65 | ″ | ″ | surface attributes |
66 | ″ | ″ | surface patches |
67 | ″ | ″ | textons |
68 | ″ | ″ | textural appearance |
69 | ″ | ″ | texture |
70 | ″ | ″ | unified model |
71 | ″ | ″ | variation |
72 | ″ | ″ | vector |
73 | ″ | ″ | visual appearance |
74 | ″ | ″ | vocabulary |
75 | ″ | schema:name | Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons |
76 | ″ | schema:pagination | 29-44 |
77 | ″ | schema:productId | N516fc4d096594a0480a0dc3c07a73f96 |
78 | ″ | ″ | N956eace9dcee4896a0217d17908c4527 |
79 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046312359 |
80 | ″ | ″ | https://doi.org/10.1023/a:1011126920638 |
81 | ″ | schema:sdDatePublished | 2022-08-04T16:52 |
82 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
83 | ″ | schema:sdPublisher | N3a1b5061f5e74a028b5f3d677b3e7176 |
84 | ″ | schema:url | https://doi.org/10.1023/a:1011126920638 |
85 | ″ | sgo:license | sg:explorer/license/ |
86 | ″ | sgo:sdDataset | articles |
87 | ″ | rdf:type | schema:ScholarlyArticle |
88 | N29ad34e358f6496e8c25086535ec051a | rdf:first | sg:person.016034550437.98 |
89 | ″ | rdf:rest | N568fc07d74804b3e9e4f8d8bae30d777 |
90 | N3a1b5061f5e74a028b5f3d677b3e7176 | schema:name | Springer Nature - SN SciGraph project |
91 | ″ | rdf:type | schema:Organization |
92 | N516fc4d096594a0480a0dc3c07a73f96 | schema:name | dimensions_id |
93 | ″ | schema:value | pub.1046312359 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | N568fc07d74804b3e9e4f8d8bae30d777 | rdf:first | sg:person.01364521761.84 |
96 | ″ | rdf:rest | rdf:nil |
97 | N7c3f64995ea741eea90f6d90b7e49e1e | schema:volumeNumber | 43 |
98 | ″ | rdf:type | schema:PublicationVolume |
99 | N956eace9dcee4896a0217d17908c4527 | schema:name | doi |
100 | ″ | schema:value | 10.1023/a:1011126920638 |
101 | ″ | rdf:type | schema:PropertyValue |
102 | Na92aa84b3f764c5bb9d1a2c1bf62963b | schema:issueNumber | 1 |
103 | ″ | rdf:type | schema:PublicationIssue |
104 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Information and Computing Sciences |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Artificial Intelligence and Image Processing |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | sg:journal.1032807 | schema:issn | 0920-5691 |
111 | ″ | ″ | 1573-1405 |
112 | ″ | schema:name | International Journal of Computer Vision |
113 | ″ | schema:publisher | Springer Nature |
114 | ″ | rdf:type | schema:Periodical |
115 | sg:person.01364521761.84 | schema:affiliation | grid-institutes:grid.47840.3f |
116 | ″ | schema:familyName | Malik |
117 | ″ | schema:givenName | Jitendra |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364521761.84 |
119 | ″ | rdf:type | schema:Person |
120 | sg:person.016034550437.98 | schema:affiliation | grid-institutes:grid.47840.3f |
121 | ″ | schema:familyName | Leung |
122 | ″ | schema:givenName | Thomas |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016034550437.98 |
124 | ″ | rdf:type | schema:Person |
125 | sg:pub.10.1007/bf00204594 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017610398 |
126 | ″ | ″ | https://doi.org/10.1007/bf00204594 |
127 | ″ | rdf:type | schema:CreativeWork |
128 | sg:pub.10.1007/bf01421486 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020275860 |
129 | ″ | ″ | https://doi.org/10.1007/bf01421486 |
130 | ″ | rdf:type | schema:CreativeWork |
131 | sg:pub.10.1023/a:1007925832420 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005653889 |
132 | ″ | ″ | https://doi.org/10.1023/a:1007925832420 |
133 | ″ | rdf:type | schema:CreativeWork |
134 | sg:pub.10.1023/a:1007975506780 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029643449 |
135 | ″ | ″ | https://doi.org/10.1023/a:1007975506780 |
136 | ″ | rdf:type | schema:CreativeWork |
137 | sg:pub.10.1023/a:1008005721484 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051637698 |
138 | ″ | ″ | https://doi.org/10.1023/a:1008005721484 |
139 | ″ | rdf:type | schema:CreativeWork |
140 | sg:pub.10.1023/a:1008061730969 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042600859 |
141 | ″ | ″ | https://doi.org/10.1023/a:1008061730969 |
142 | ″ | rdf:type | schema:CreativeWork |
143 | sg:pub.10.1038/290091a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040887630 |
144 | ″ | ″ | https://doi.org/10.1038/290091a0 |
145 | ″ | rdf:type | schema:CreativeWork |
146 | grid-institutes:grid.47840.3f | schema:alternateName | Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA |
147 | ″ | schema:name | Computer Science Division, University of California at Berkeley, 94720-1776, Berkeley, CA, USA |
148 | ″ | rdf:type | schema:Organization |