Analysis of the MAP/Ga,b/1/N Queue View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-06

AUTHORS

U.C. Gupta, P. Vijaya Laxmi

ABSTRACT

The Markovian arrival process (MAP) is used to represent the bursty and correlated traffic arising in modern telecommunication network. In this paper, we consider a single server finite capacity queue with general bulk service rule in which arrivals are governed by MAP and service times are arbitrarily distributed. The distributions of the number of customers in the queue at arbitrary, post-departure and pre-arrival epochs have been obtained using the supplementary variable and the embedded Markov chain techniques. Computational procedure has been given when the service time distribution is of phase type. More... »

PAGES

109-124

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1010909913320

DOI

http://dx.doi.org/10.1023/a:1010909913320

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027903993


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, Indian Institute of Technology, 721302, Kharagpur-, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gupta", 
        "givenName": "U.C.", 
        "id": "sg:person.011323710421.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011323710421.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, Indian Institute of Technology, 721302, Kharagpur-, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laxmi", 
        "givenName": "P. Vijaya", 
        "id": "sg:person.07416436705.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07416436705.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01149262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001566068", 
          "https://doi.org/10.1007/bf01149262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01149262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001566068", 
          "https://doi.org/10.1007/bf01149262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6377(99)00032-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010158130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0001867800019947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010242434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200039516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011768593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s033427000001239x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016543408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15326349108807174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028296899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01158876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039777940", 
          "https://doi.org/10.1007/bf01158876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01158876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039777940", 
          "https://doi.org/10.1007/bf01158876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15326349408807326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047929998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01158395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048991364", 
          "https://doi.org/10.1007/bf01158395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01158395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048991364", 
          "https://doi.org/10.1007/bf01158395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019197911961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050267816", 
          "https://doi.org/10.1023/a:1019197911961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01719449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051119818", 
          "https://doi.org/10.1007/bf01719449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01719449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051119818", 
          "https://doi.org/10.1007/bf01719449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177698869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064399508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15807/jorsj.39.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090377418"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-06", 
    "datePublishedReg": "2001-06-01", 
    "description": "The Markovian arrival process (MAP) is used to represent the bursty and correlated traffic arising in modern telecommunication network. In this paper, we consider a single server finite capacity queue with general bulk service rule in which arrivals are governed by MAP and service times are arbitrarily distributed. The distributions of the number of customers in the queue at arbitrary, post-departure and pre-arrival epochs have been obtained using the supplementary variable and the embedded Markov chain techniques. Computational procedure has been given when the service time distribution is of phase type.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1010909913320", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1048269", 
        "issn": [
          "0257-0130", 
          "1572-9443"
        ], 
        "name": "Queueing Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "name": "Analysis of the MAP/Ga,b/1/N Queue", 
    "pagination": "109-124", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "84ece48547a505a1c82d84d93e1b9b67149c453b2735f7c4c073db9024d78b31"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1010909913320"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027903993"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1010909913320", 
      "https://app.dimensions.ai/details/publication/pub.1027903993"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023%2FA%3A1010909913320"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1010909913320'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1010909913320'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1010909913320'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1010909913320'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1010909913320 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne729e184cfbf44a0b78309318fc03155
4 schema:citation sg:pub.10.1007/bf01149262
5 sg:pub.10.1007/bf01158395
6 sg:pub.10.1007/bf01158876
7 sg:pub.10.1007/bf01719449
8 sg:pub.10.1023/a:1019197911961
9 https://doi.org/10.1016/s0167-6377(99)00032-2
10 https://doi.org/10.1017/s0001867800019947
11 https://doi.org/10.1017/s0021900200039516
12 https://doi.org/10.1017/s033427000001239x
13 https://doi.org/10.1080/15326349108807174
14 https://doi.org/10.1080/15326349408807326
15 https://doi.org/10.1214/aoms/1177698869
16 https://doi.org/10.15807/jorsj.39.25
17 schema:datePublished 2001-06
18 schema:datePublishedReg 2001-06-01
19 schema:description The Markovian arrival process (MAP) is used to represent the bursty and correlated traffic arising in modern telecommunication network. In this paper, we consider a single server finite capacity queue with general bulk service rule in which arrivals are governed by MAP and service times are arbitrarily distributed. The distributions of the number of customers in the queue at arbitrary, post-departure and pre-arrival epochs have been obtained using the supplementary variable and the embedded Markov chain techniques. Computational procedure has been given when the service time distribution is of phase type.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N620f5bfcc8684845977b2aa5523c6b4c
24 Na3a19c99b7ce45da8dfbdc4a8be505c6
25 sg:journal.1048269
26 schema:name Analysis of the MAP/Ga,b/1/N Queue
27 schema:pagination 109-124
28 schema:productId Na3a8ceb82d9a4051a80be997c1fbc755
29 Nae202068a42a41ee8431093493ab8b0c
30 Nc03a280477304c84915925109267895b
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027903993
32 https://doi.org/10.1023/a:1010909913320
33 schema:sdDatePublished 2019-04-10T15:06
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N074dc6d620484aeea99f6c902ade4317
36 schema:url http://link.springer.com/10.1023%2FA%3A1010909913320
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N074dc6d620484aeea99f6c902ade4317 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N1e203d7f739b414c90389dc3f098cf83 schema:name Department of Mathematics, Indian Institute of Technology, 721302, Kharagpur-, India
43 rdf:type schema:Organization
44 N56c30dcfff7d49b4a37414f6f196d084 schema:name Department of Mathematics, Indian Institute of Technology, 721302, Kharagpur-, India
45 rdf:type schema:Organization
46 N620f5bfcc8684845977b2aa5523c6b4c schema:issueNumber 2
47 rdf:type schema:PublicationIssue
48 Na3a19c99b7ce45da8dfbdc4a8be505c6 schema:volumeNumber 38
49 rdf:type schema:PublicationVolume
50 Na3a8ceb82d9a4051a80be997c1fbc755 schema:name doi
51 schema:value 10.1023/a:1010909913320
52 rdf:type schema:PropertyValue
53 Nae202068a42a41ee8431093493ab8b0c schema:name readcube_id
54 schema:value 84ece48547a505a1c82d84d93e1b9b67149c453b2735f7c4c073db9024d78b31
55 rdf:type schema:PropertyValue
56 Nc03a280477304c84915925109267895b schema:name dimensions_id
57 schema:value pub.1027903993
58 rdf:type schema:PropertyValue
59 Ne729e184cfbf44a0b78309318fc03155 rdf:first sg:person.011323710421.18
60 rdf:rest Nfcf881a7a4014a918cad6d260c96a215
61 Nfcf881a7a4014a918cad6d260c96a215 rdf:first sg:person.07416436705.21
62 rdf:rest rdf:nil
63 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
64 schema:name Information and Computing Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
67 schema:name Artificial Intelligence and Image Processing
68 rdf:type schema:DefinedTerm
69 sg:journal.1048269 schema:issn 0257-0130
70 1572-9443
71 schema:name Queueing Systems
72 rdf:type schema:Periodical
73 sg:person.011323710421.18 schema:affiliation N56c30dcfff7d49b4a37414f6f196d084
74 schema:familyName Gupta
75 schema:givenName U.C.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011323710421.18
77 rdf:type schema:Person
78 sg:person.07416436705.21 schema:affiliation N1e203d7f739b414c90389dc3f098cf83
79 schema:familyName Laxmi
80 schema:givenName P. Vijaya
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07416436705.21
82 rdf:type schema:Person
83 sg:pub.10.1007/bf01149262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001566068
84 https://doi.org/10.1007/bf01149262
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf01158395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048991364
87 https://doi.org/10.1007/bf01158395
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf01158876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039777940
90 https://doi.org/10.1007/bf01158876
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf01719449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051119818
93 https://doi.org/10.1007/bf01719449
94 rdf:type schema:CreativeWork
95 sg:pub.10.1023/a:1019197911961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050267816
96 https://doi.org/10.1023/a:1019197911961
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/s0167-6377(99)00032-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010158130
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1017/s0001867800019947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010242434
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1017/s0021900200039516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011768593
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1017/s033427000001239x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016543408
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1080/15326349108807174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028296899
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1080/15326349408807326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047929998
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1214/aoms/1177698869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064399508
111 rdf:type schema:CreativeWork
112 https://doi.org/10.15807/jorsj.39.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090377418
113 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...