Relations of the Topographic EEG Organization to Temperament Traits View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-07

AUTHORS

O. M. Razumnikova

ABSTRACT

EEG mapping in six frequency bands was examined in relation to Keirsey and Eysenck temperament scales in 46 males 17–20 years old at rest. An analysis of the amplitude and coherence of the EEG (16-channel recording) revealed a positive correlation between interhemispheric coherence in θ and α bands, and neuroticism as well as sensation scales. Extraversion correlated negatively with coherence, predominantly focused in the left frontal cortex in α2band. Combinations of these temperament traits were associated with specific patterns of EEG amplitude and coherence. The most pronounced changes in EEG were found in subjects with high sensation and judgment, which were characterized by increased amplitudes and coherence in θ1, 2bands, as well as increased interhemispheric coherence in the frontal cortex. Such a consistent interaction of neuronal assembles within the baseline EEG suggest that certain behavioral strategies are associated with specific temperament types. More... »

PAGES

413-422

References to SciGraph publications

Journal

TITLE

Human Physiology

ISSUE

4

VOLUME

27

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1010902517347

DOI

http://dx.doi.org/10.1023/a:1010902517347

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048238830


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.466123.4", 
          "name": [
            "Institute of Physiology, Siberian Division, Russian Academy of Medical Sciences, Novosibirsk"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Razumnikova", 
        "givenName": "O. M.", 
        "id": "sg:person.012671500127.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012671500127.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0167-8760(92)90069-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003571070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0093-934x(90)90004-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005712838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/002075998400394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007326655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0025303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007842419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8760(96)00057-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012091371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8760(97)00757-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016516649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01129339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016598100", 
          "https://doi.org/10.1007/bf01129339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01129339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016598100", 
          "https://doi.org/10.1007/bf01129339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1364-6613(99)01399-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018202782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8760(99)00047-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022966802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-0511(90)90038-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025688472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0191-8869(83)90002-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028958481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-0643-4_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029767898", 
          "https://doi.org/10.1007/978-1-4899-0643-4_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02699939308409180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032408847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01129966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033662414", 
          "https://doi.org/10.1007/bf01129966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01129966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033662414", 
          "https://doi.org/10.1007/bf01129966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-0082(97)00023-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034074074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-3223(94)00177-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037398764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0278-2626(92)90020-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045303518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0191-8869(93)90095-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048335503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0022-3514.62.4.676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050327002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0894-4105.7.4.476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052575282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6918(89)90016-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053339723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077178854", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082428849", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-07", 
    "datePublishedReg": "2001-07-01", 
    "description": "EEG mapping in six frequency bands was examined in relation to Keirsey and Eysenck temperament scales in 46 males 17\u201320 years old at rest. An analysis of the amplitude and coherence of the EEG (16-channel recording) revealed a positive correlation between interhemispheric coherence in \u03b8 and \u03b1 bands, and neuroticism as well as sensation scales. Extraversion correlated negatively with coherence, predominantly focused in the left frontal cortex in \u03b12band. Combinations of these temperament traits were associated with specific patterns of EEG amplitude and coherence. The most pronounced changes in EEG were found in subjects with high sensation and judgment, which were characterized by increased amplitudes and coherence in \u03b81, 2bands, as well as increased interhemispheric coherence in the frontal cortex. Such a consistent interaction of neuronal assembles within the baseline EEG suggest that certain behavioral strategies are associated with specific temperament types.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1010902517347", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1085127", 
        "issn": [
          "0362-1197", 
          "1608-3164"
        ], 
        "name": "Human Physiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Relations of the Topographic EEG Organization to Temperament Traits", 
    "pagination": "413-422", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e5cdc91454ed0060be9194fb3873559afc7dbe82e4338b0c632ac4b273ac6d99"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1010902517347"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048238830"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1010902517347", 
      "https://app.dimensions.ai/details/publication/pub.1048238830"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1010902517347"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1010902517347'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1010902517347'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1010902517347'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1010902517347'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1010902517347 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N01afd62d2a954a038cad666304c1913b
4 schema:citation sg:pub.10.1007/978-1-4899-0643-4_7
5 sg:pub.10.1007/bf01129339
6 sg:pub.10.1007/bf01129966
7 https://app.dimensions.ai/details/publication/pub.1077178854
8 https://app.dimensions.ai/details/publication/pub.1082428849
9 https://doi.org/10.1016/0001-6918(89)90016-4
10 https://doi.org/10.1016/0006-3223(94)00177-5
11 https://doi.org/10.1016/0093-934x(90)90004-z
12 https://doi.org/10.1016/0167-8760(92)90069-n
13 https://doi.org/10.1016/0191-8869(83)90002-8
14 https://doi.org/10.1016/0191-8869(93)90095-k
15 https://doi.org/10.1016/0278-2626(92)90020-m
16 https://doi.org/10.1016/0301-0511(90)90038-x
17 https://doi.org/10.1016/s0167-8760(96)00057-8
18 https://doi.org/10.1016/s0167-8760(97)00757-5
19 https://doi.org/10.1016/s0167-8760(99)00047-1
20 https://doi.org/10.1016/s0301-0082(97)00023-3
21 https://doi.org/10.1016/s1364-6613(99)01399-6
22 https://doi.org/10.1037/0022-3514.62.4.676
23 https://doi.org/10.1037/0894-4105.7.4.476
24 https://doi.org/10.1037/h0025303
25 https://doi.org/10.1080/002075998400394
26 https://doi.org/10.1080/02699939308409180
27 schema:datePublished 2001-07
28 schema:datePublishedReg 2001-07-01
29 schema:description EEG mapping in six frequency bands was examined in relation to Keirsey and Eysenck temperament scales in 46 males 17–20 years old at rest. An analysis of the amplitude and coherence of the EEG (16-channel recording) revealed a positive correlation between interhemispheric coherence in θ and α bands, and neuroticism as well as sensation scales. Extraversion correlated negatively with coherence, predominantly focused in the left frontal cortex in α2band. Combinations of these temperament traits were associated with specific patterns of EEG amplitude and coherence. The most pronounced changes in EEG were found in subjects with high sensation and judgment, which were characterized by increased amplitudes and coherence in θ1, 2bands, as well as increased interhemispheric coherence in the frontal cortex. Such a consistent interaction of neuronal assembles within the baseline EEG suggest that certain behavioral strategies are associated with specific temperament types.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N23179f4f4cec4de59e3bb9b5498a1dd1
34 Nc62f06add1a7463993d6c88da2b6b039
35 sg:journal.1085127
36 schema:name Relations of the Topographic EEG Organization to Temperament Traits
37 schema:pagination 413-422
38 schema:productId N8821d927b64a4dd8850a331f338b6101
39 Nac77ff91c12f4e63af09e159d427ed6c
40 Naeb651bbe2ce4ef7982b7efb568a74aa
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048238830
42 https://doi.org/10.1023/a:1010902517347
43 schema:sdDatePublished 2019-04-10T23:22
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Naeaf2645a96f4abf9a45282ae25a7cf3
46 schema:url http://link.springer.com/10.1023/A:1010902517347
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N01afd62d2a954a038cad666304c1913b rdf:first sg:person.012671500127.44
51 rdf:rest rdf:nil
52 N23179f4f4cec4de59e3bb9b5498a1dd1 schema:issueNumber 4
53 rdf:type schema:PublicationIssue
54 N8821d927b64a4dd8850a331f338b6101 schema:name dimensions_id
55 schema:value pub.1048238830
56 rdf:type schema:PropertyValue
57 Nac77ff91c12f4e63af09e159d427ed6c schema:name readcube_id
58 schema:value e5cdc91454ed0060be9194fb3873559afc7dbe82e4338b0c632ac4b273ac6d99
59 rdf:type schema:PropertyValue
60 Naeaf2645a96f4abf9a45282ae25a7cf3 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Naeb651bbe2ce4ef7982b7efb568a74aa schema:name doi
63 schema:value 10.1023/a:1010902517347
64 rdf:type schema:PropertyValue
65 Nc62f06add1a7463993d6c88da2b6b039 schema:volumeNumber 27
66 rdf:type schema:PublicationVolume
67 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
68 schema:name Medical and Health Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
71 schema:name Neurosciences
72 rdf:type schema:DefinedTerm
73 sg:journal.1085127 schema:issn 0362-1197
74 1608-3164
75 schema:name Human Physiology
76 rdf:type schema:Periodical
77 sg:person.012671500127.44 schema:affiliation https://www.grid.ac/institutes/grid.466123.4
78 schema:familyName Razumnikova
79 schema:givenName O. M.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012671500127.44
81 rdf:type schema:Person
82 sg:pub.10.1007/978-1-4899-0643-4_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029767898
83 https://doi.org/10.1007/978-1-4899-0643-4_7
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf01129339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016598100
86 https://doi.org/10.1007/bf01129339
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf01129966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033662414
89 https://doi.org/10.1007/bf01129966
90 rdf:type schema:CreativeWork
91 https://app.dimensions.ai/details/publication/pub.1077178854 schema:CreativeWork
92 https://app.dimensions.ai/details/publication/pub.1082428849 schema:CreativeWork
93 https://doi.org/10.1016/0001-6918(89)90016-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053339723
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0006-3223(94)00177-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037398764
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0093-934x(90)90004-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005712838
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0167-8760(92)90069-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1003571070
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0191-8869(83)90002-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028958481
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0191-8869(93)90095-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1048335503
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0278-2626(92)90020-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1045303518
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0301-0511(90)90038-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025688472
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0167-8760(96)00057-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012091371
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/s0167-8760(97)00757-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016516649
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0167-8760(99)00047-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022966802
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0301-0082(97)00023-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034074074
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s1364-6613(99)01399-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018202782
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1037/0022-3514.62.4.676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050327002
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1037/0894-4105.7.4.476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052575282
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1037/h0025303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007842419
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1080/002075998400394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007326655
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1080/02699939308409180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032408847
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.466123.4 schema:alternateName Department of Medical Sciences
130 schema:name Institute of Physiology, Siberian Division, Russian Academy of Medical Sciences, Novosibirsk
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...