Ontology type: schema:ScholarlyArticle
2001-05
AUTHORSA. Fernández, W. Kasparek, K. Likin, R. Martín
ABSTRACTTJ-II plasma start-up and heating are made by electron cyclotron resonance waves at the second harmonic of the electron cyclotron frequency. Two quasi-optical transmission lines transmit the microwave power of the gyrotrons to the vacuum vessel. The first line launches the microwave power under fixed injection geometry, i.e. there is no possibility to change the launching angle and the wave polarization. The second line has a moveable mirror installed inside the TJ-II vessel. To get high absorption efficiency and a narrow energy deposition profile the internal mirror focuses the wave beam at plasma center.To get more flexibility in the experiments on heating and current drive the first transmission line needs to be upgraded. The design is presented in this paper. The new launching antenna includes an internal mirror to focus the beam and to change the injection angle. Both launchers are then symmetrical. A polarizer consisting of two corrugated mirrors is used to get any wave polarization. Two mirrors with an array of coupling holes and calorimetric measurements of the energy absorbed in the barrier window allow the estimation of the microwave power launched into the TJ-II. More... »
PAGES649-660
http://scigraph.springernature.com/pub.10.1023/a:1010633424515
DOIhttp://dx.doi.org/10.1023/a:1010633424515
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1013988822
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Asociaci\u00f3n Euratom-Ciemat para Fusi\u00f3n, Avda. Complutense 22, 28040, Madrid, Spain",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Asociaci\u00f3n Euratom-Ciemat para Fusi\u00f3n, Avda. Complutense 22, 28040, Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Fern\u00e1ndez",
"givenName": "A.",
"id": "sg:person.013634661763.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013634661763.77"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut f\u00fcr Plasmaforschung, Universit\u00e4t Stuttgart, Pfaffenwaldring 31, 70569, Stuttgart, Germany",
"id": "http://www.grid.ac/institutes/grid.5719.a",
"name": [
"Institut f\u00fcr Plasmaforschung, Universit\u00e4t Stuttgart, Pfaffenwaldring 31, 70569, Stuttgart, Germany"
],
"type": "Organization"
},
"familyName": "Kasparek",
"givenName": "W.",
"id": "sg:person.014046226243.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014046226243.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Asociaci\u00f3n Euratom-Ciemat para Fusi\u00f3n, Avda. Complutense 22, 28040, Madrid, Spain",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Asociaci\u00f3n Euratom-Ciemat para Fusi\u00f3n, Avda. Complutense 22, 28040, Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Likin",
"givenName": "K.",
"id": "sg:person.011324271171.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011324271171.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Asociaci\u00f3n Euratom-Ciemat para Fusi\u00f3n, Avda. Complutense 22, 28040, Madrid, Spain",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Asociaci\u00f3n Euratom-Ciemat para Fusi\u00f3n, Avda. Complutense 22, 28040, Madrid, Spain"
],
"type": "Organization"
},
"familyName": "Mart\u00edn",
"givenName": "R.",
"id": "sg:person.011002324022.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002324022.64"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1023/a:1006720117520",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003326761",
"https://doi.org/10.1023/a:1006720117520"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02072550",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015405096",
"https://doi.org/10.1007/bf02072550"
],
"type": "CreativeWork"
}
],
"datePublished": "2001-05",
"datePublishedReg": "2001-05-01",
"description": "TJ-II plasma start-up and heating are made by electron cyclotron resonance waves at the second harmonic of the electron cyclotron frequency. Two quasi-optical transmission lines transmit the microwave power of the gyrotrons to the vacuum vessel. The first line launches the microwave power under fixed injection geometry, i.e. there is no possibility to change the launching angle and the wave polarization. The second line has a moveable mirror installed inside the TJ-II vessel. To get high absorption efficiency and a narrow energy deposition profile the internal mirror focuses the wave beam at plasma center.To get more flexibility in the experiments on heating and current drive the first transmission line needs to be upgraded. The design is presented in this paper. The new launching antenna includes an internal mirror to focus the beam and to change the injection angle. Both launchers are then symmetrical. A polarizer consisting of two corrugated mirrors is used to get any wave polarization. Two mirrors with an array of coupling holes and calorimetric measurements of the energy absorbed in the barrier window allow the estimation of the microwave power launched into the TJ-II.",
"genre": "article",
"id": "sg:pub.10.1023/a:1010633424515",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1026190",
"issn": [
"1866-6892",
"1572-9559"
],
"name": "Journal of Infrared, Millimeter, and Terahertz Waves",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "22"
}
],
"keywords": [
"quasi-optical transmission line",
"internal mirror",
"microwave power",
"wave polarization",
"TJ-II plasmas",
"electron cyclotron frequency",
"cyclotron frequency",
"first transmission line",
"high absorption efficiency",
"plasma center",
"TJ-II",
"launching antenna",
"moveable mirror",
"energy deposition",
"current drive",
"second harmonic",
"wave beams",
"resonance waves",
"vacuum vessel",
"mirror",
"transmission lines",
"absorption efficiency",
"beam",
"polarization",
"injection geometry",
"gyrotron",
"calorimetric measurements",
"injection angle",
"polarizer",
"heating",
"more flexibility",
"holes",
"angle",
"plasma",
"waves",
"energy",
"power",
"harmonics",
"launcher",
"geometry",
"estimation",
"deposition",
"measurements",
"antenna",
"lines",
"array",
"window",
"design",
"frequency",
"experiments",
"possibility",
"drive",
"efficiency",
"flexibility",
"center",
"paper",
"second line",
"vessels",
"first line"
],
"name": "Design of the Upgraded TJ-II Quasi-optical Transmission Line",
"pagination": "649-660",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1013988822"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1023/a:1010633424515"
]
}
],
"sameAs": [
"https://doi.org/10.1023/a:1010633424515",
"https://app.dimensions.ai/details/publication/pub.1013988822"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:21",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_316.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1023/a:1010633424515"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1010633424515'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1010633424515'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1010633424515'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1010633424515'
This table displays all metadata directly associated to this object as RDF triples.
149 TRIPLES
22 PREDICATES
87 URIs
77 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1023/a:1010633424515 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | N5df238dc8f4c451aab8cb1cdba65f49f |
4 | ″ | schema:citation | sg:pub.10.1007/bf02072550 |
5 | ″ | ″ | sg:pub.10.1023/a:1006720117520 |
6 | ″ | schema:datePublished | 2001-05 |
7 | ″ | schema:datePublishedReg | 2001-05-01 |
8 | ″ | schema:description | TJ-II plasma start-up and heating are made by electron cyclotron resonance waves at the second harmonic of the electron cyclotron frequency. Two quasi-optical transmission lines transmit the microwave power of the gyrotrons to the vacuum vessel. The first line launches the microwave power under fixed injection geometry, i.e. there is no possibility to change the launching angle and the wave polarization. The second line has a moveable mirror installed inside the TJ-II vessel. To get high absorption efficiency and a narrow energy deposition profile the internal mirror focuses the wave beam at plasma center.To get more flexibility in the experiments on heating and current drive the first transmission line needs to be upgraded. The design is presented in this paper. The new launching antenna includes an internal mirror to focus the beam and to change the injection angle. Both launchers are then symmetrical. A polarizer consisting of two corrugated mirrors is used to get any wave polarization. Two mirrors with an array of coupling holes and calorimetric measurements of the energy absorbed in the barrier window allow the estimation of the microwave power launched into the TJ-II. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | Nbea3f42c97f04525aa4dae564dd4ae37 |
13 | ″ | ″ | Nd0bfc4c0f68a40299b19ae93c9a65b60 |
14 | ″ | ″ | sg:journal.1026190 |
15 | ″ | schema:keywords | TJ-II |
16 | ″ | ″ | TJ-II plasmas |
17 | ″ | ″ | absorption efficiency |
18 | ″ | ″ | angle |
19 | ″ | ″ | antenna |
20 | ″ | ″ | array |
21 | ″ | ″ | beam |
22 | ″ | ″ | calorimetric measurements |
23 | ″ | ″ | center |
24 | ″ | ″ | current drive |
25 | ″ | ″ | cyclotron frequency |
26 | ″ | ″ | deposition |
27 | ″ | ″ | design |
28 | ″ | ″ | drive |
29 | ″ | ″ | efficiency |
30 | ″ | ″ | electron cyclotron frequency |
31 | ″ | ″ | energy |
32 | ″ | ″ | energy deposition |
33 | ″ | ″ | estimation |
34 | ″ | ″ | experiments |
35 | ″ | ″ | first line |
36 | ″ | ″ | first transmission line |
37 | ″ | ″ | flexibility |
38 | ″ | ″ | frequency |
39 | ″ | ″ | geometry |
40 | ″ | ″ | gyrotron |
41 | ″ | ″ | harmonics |
42 | ″ | ″ | heating |
43 | ″ | ″ | high absorption efficiency |
44 | ″ | ″ | holes |
45 | ″ | ″ | injection angle |
46 | ″ | ″ | injection geometry |
47 | ″ | ″ | internal mirror |
48 | ″ | ″ | launcher |
49 | ″ | ″ | launching antenna |
50 | ″ | ″ | lines |
51 | ″ | ″ | measurements |
52 | ″ | ″ | microwave power |
53 | ″ | ″ | mirror |
54 | ″ | ″ | more flexibility |
55 | ″ | ″ | moveable mirror |
56 | ″ | ″ | paper |
57 | ″ | ″ | plasma |
58 | ″ | ″ | plasma center |
59 | ″ | ″ | polarization |
60 | ″ | ″ | polarizer |
61 | ″ | ″ | possibility |
62 | ″ | ″ | power |
63 | ″ | ″ | quasi-optical transmission line |
64 | ″ | ″ | resonance waves |
65 | ″ | ″ | second harmonic |
66 | ″ | ″ | second line |
67 | ″ | ″ | transmission lines |
68 | ″ | ″ | vacuum vessel |
69 | ″ | ″ | vessels |
70 | ″ | ″ | wave beams |
71 | ″ | ″ | wave polarization |
72 | ″ | ″ | waves |
73 | ″ | ″ | window |
74 | ″ | schema:name | Design of the Upgraded TJ-II Quasi-optical Transmission Line |
75 | ″ | schema:pagination | 649-660 |
76 | ″ | schema:productId | N4efb36e357154e3197a68b86779db2ef |
77 | ″ | ″ | N87e1ec3f3e934397972403a8ad9e7fb5 |
78 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013988822 |
79 | ″ | ″ | https://doi.org/10.1023/a:1010633424515 |
80 | ″ | schema:sdDatePublished | 2022-05-20T07:21 |
81 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
82 | ″ | schema:sdPublisher | N75985543cb4f44d584e4206e04d8fa67 |
83 | ″ | schema:url | https://doi.org/10.1023/a:1010633424515 |
84 | ″ | sgo:license | sg:explorer/license/ |
85 | ″ | sgo:sdDataset | articles |
86 | ″ | rdf:type | schema:ScholarlyArticle |
87 | N4e3c91a54c344ddaa52568a1e1ab247a | rdf:first | sg:person.011002324022.64 |
88 | ″ | rdf:rest | rdf:nil |
89 | N4efb36e357154e3197a68b86779db2ef | schema:name | dimensions_id |
90 | ″ | schema:value | pub.1013988822 |
91 | ″ | rdf:type | schema:PropertyValue |
92 | N5df238dc8f4c451aab8cb1cdba65f49f | rdf:first | sg:person.013634661763.77 |
93 | ″ | rdf:rest | N72595abfe7ef41719057301650c16e00 |
94 | N72595abfe7ef41719057301650c16e00 | rdf:first | sg:person.014046226243.34 |
95 | ″ | rdf:rest | N73a7340246e640ddaba7d5f63a6448f2 |
96 | N73a7340246e640ddaba7d5f63a6448f2 | rdf:first | sg:person.011324271171.39 |
97 | ″ | rdf:rest | N4e3c91a54c344ddaa52568a1e1ab247a |
98 | N75985543cb4f44d584e4206e04d8fa67 | schema:name | Springer Nature - SN SciGraph project |
99 | ″ | rdf:type | schema:Organization |
100 | N87e1ec3f3e934397972403a8ad9e7fb5 | schema:name | doi |
101 | ″ | schema:value | 10.1023/a:1010633424515 |
102 | ″ | rdf:type | schema:PropertyValue |
103 | Nbea3f42c97f04525aa4dae564dd4ae37 | schema:volumeNumber | 22 |
104 | ″ | rdf:type | schema:PublicationVolume |
105 | Nd0bfc4c0f68a40299b19ae93c9a65b60 | schema:issueNumber | 5 |
106 | ″ | rdf:type | schema:PublicationIssue |
107 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Physical Sciences |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Other Physical Sciences |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | sg:journal.1026190 | schema:issn | 1572-9559 |
114 | ″ | ″ | 1866-6892 |
115 | ″ | schema:name | Journal of Infrared, Millimeter, and Terahertz Waves |
116 | ″ | schema:publisher | Springer Nature |
117 | ″ | rdf:type | schema:Periodical |
118 | sg:person.011002324022.64 | schema:affiliation | grid-institutes:None |
119 | ″ | schema:familyName | Martín |
120 | ″ | schema:givenName | R. |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002324022.64 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.011324271171.39 | schema:affiliation | grid-institutes:None |
124 | ″ | schema:familyName | Likin |
125 | ″ | schema:givenName | K. |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011324271171.39 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.013634661763.77 | schema:affiliation | grid-institutes:None |
129 | ″ | schema:familyName | Fernández |
130 | ″ | schema:givenName | A. |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013634661763.77 |
132 | ″ | rdf:type | schema:Person |
133 | sg:person.014046226243.34 | schema:affiliation | grid-institutes:grid.5719.a |
134 | ″ | schema:familyName | Kasparek |
135 | ″ | schema:givenName | W. |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014046226243.34 |
137 | ″ | rdf:type | schema:Person |
138 | sg:pub.10.1007/bf02072550 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015405096 |
139 | ″ | ″ | https://doi.org/10.1007/bf02072550 |
140 | ″ | rdf:type | schema:CreativeWork |
141 | sg:pub.10.1023/a:1006720117520 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003326761 |
142 | ″ | ″ | https://doi.org/10.1023/a:1006720117520 |
143 | ″ | rdf:type | schema:CreativeWork |
144 | grid-institutes:None | schema:alternateName | Asociación Euratom-Ciemat para Fusión, Avda. Complutense 22, 28040, Madrid, Spain |
145 | ″ | schema:name | Asociación Euratom-Ciemat para Fusión, Avda. Complutense 22, 28040, Madrid, Spain |
146 | ″ | rdf:type | schema:Organization |
147 | grid-institutes:grid.5719.a | schema:alternateName | Institut für Plasmaforschung, Universität Stuttgart, Pfaffenwaldring 31, 70569, Stuttgart, Germany |
148 | ″ | schema:name | Institut für Plasmaforschung, Universität Stuttgart, Pfaffenwaldring 31, 70569, Stuttgart, Germany |
149 | ″ | rdf:type | schema:Organization |