Neutral Fermion with a Magnetic Moment in External Electromagnetic Fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-03

AUTHORS

V. R. Khalilov

ABSTRACT

The interaction between a massive neutral fermion with a static (spin) magnetic dipole moment μ and an external electromagnetic field is described by the Dirac–Pauli equation. Exact solutions of this equation are obtained along with the corresponding energy spectrum for an axially symmetric external magnetic field and for some centrally symmetric electric fields. It is shown that the spin–orbital interaction of a neutral fermion with a magnetic moment determines both the characteristic properties of the quantum states and the fermion energy spectrum. It is found that (1) the discrete energy spectrum of a neutral fermion depends on the projection of the fermion spin on a certain quantization axis, (2) the ground energy level of a fermion in these electric fields as well as the energy levels of all bound states with a fixed value of the quantum number characterizing the projection of the fermion spin in the electric field E = er is degenerate and the degeneration order is countably infinite, and (3) the energy spectra of neutral fermions and antifermions with spin magnetic moments are symmetric in centrally symmetric fields. Bound states of a neutral fermion with a magnetic moment in an external electric field do exist even if the Dirac–Pauli equation does not explicitly contain the term with the fermion mass. In addition, in centrally symmetric electric fields, there exist a countably infinite set of pairs of isolated charge-conjugate zero-energy solutions of the Dirac–Pauli equation. More... »

PAGES

354-366

References to SciGraph publications

  • 1969-03. A PCAC puzzle: π0→γγ in the σ-model in IL NUOVO CIMENTO A (1965-1970)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1010320001946

    DOI

    http://dx.doi.org/10.1023/a:1010320001946

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015509107


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khalilov", 
            "givenName": "V. R.", 
            "id": "sg:person.013233115763.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233115763.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02823296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012901556", 
              "https://doi.org/10.1007/bf02823296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02823296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012901556", 
              "https://doi.org/10.1007/bf02823296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.61.022101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019090314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.61.022101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019090314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.73.407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060453946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.73.407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060453946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.13.3398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060684031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.13.3398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060684031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.42.1698", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060783699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.42.1698", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060783699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.53.319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060790876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.53.319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060790876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.63.380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060799912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.63.380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060799912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.13.203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060837127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.13.203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060837127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217732398000668", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062920779"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-03", 
        "datePublishedReg": "2001-03-01", 
        "description": "The interaction between a massive neutral fermion with a static (spin) magnetic dipole moment \u03bc and an external electromagnetic field is described by the Dirac\u2013Pauli equation. Exact solutions of this equation are obtained along with the corresponding energy spectrum for an axially symmetric external magnetic field and for some centrally symmetric electric fields. It is shown that the spin\u2013orbital interaction of a neutral fermion with a magnetic moment determines both the characteristic properties of the quantum states and the fermion energy spectrum. It is found that (1) the discrete energy spectrum of a neutral fermion depends on the projection of the fermion spin on a certain quantization axis, (2) the ground energy level of a fermion in these electric fields as well as the energy levels of all bound states with a fixed value of the quantum number characterizing the projection of the fermion spin in the electric field E = er is degenerate and the degeneration order is countably infinite, and (3) the energy spectra of neutral fermions and antifermions with spin magnetic moments are symmetric in centrally symmetric fields. Bound states of a neutral fermion with a magnetic moment in an external electric field do exist even if the Dirac\u2013Pauli equation does not explicitly contain the term with the fermion mass. In addition, in centrally symmetric electric fields, there exist a countably infinite set of pairs of isolated charge-conjugate zero-energy solutions of the Dirac\u2013Pauli equation.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1023/a:1010320001946", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1327888", 
            "issn": [
              "0040-5779", 
              "2305-3135"
            ], 
            "name": "Theoretical and Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "126"
          }
        ], 
        "name": "Neutral Fermion with a Magnetic Moment in External Electromagnetic Fields", 
        "pagination": "354-366", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "49e481d5c087fb192888de52a533d64308adc9888ad978ef1cab1b3bbb62851c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1010320001946"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015509107"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1010320001946", 
          "https://app.dimensions.ai/details/publication/pub.1015509107"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000499.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1023/A:1010320001946"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1010320001946'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1010320001946'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1010320001946'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1010320001946'


     

    This table displays all metadata directly associated to this object as RDF triples.

    89 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1010320001946 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author Nad5ab7f6eb194298ad403d6833d813e0
    4 schema:citation sg:pub.10.1007/bf02823296
    5 https://doi.org/10.1103/physrev.73.407
    6 https://doi.org/10.1103/physreva.61.022101
    7 https://doi.org/10.1103/physrevd.13.3398
    8 https://doi.org/10.1103/physrevlett.42.1698
    9 https://doi.org/10.1103/physrevlett.53.319
    10 https://doi.org/10.1103/physrevlett.63.380
    11 https://doi.org/10.1103/revmodphys.13.203
    12 https://doi.org/10.1142/s0217732398000668
    13 schema:datePublished 2001-03
    14 schema:datePublishedReg 2001-03-01
    15 schema:description The interaction between a massive neutral fermion with a static (spin) magnetic dipole moment μ and an external electromagnetic field is described by the Dirac–Pauli equation. Exact solutions of this equation are obtained along with the corresponding energy spectrum for an axially symmetric external magnetic field and for some centrally symmetric electric fields. It is shown that the spin–orbital interaction of a neutral fermion with a magnetic moment determines both the characteristic properties of the quantum states and the fermion energy spectrum. It is found that (1) the discrete energy spectrum of a neutral fermion depends on the projection of the fermion spin on a certain quantization axis, (2) the ground energy level of a fermion in these electric fields as well as the energy levels of all bound states with a fixed value of the quantum number characterizing the projection of the fermion spin in the electric field E = er is degenerate and the degeneration order is countably infinite, and (3) the energy spectra of neutral fermions and antifermions with spin magnetic moments are symmetric in centrally symmetric fields. Bound states of a neutral fermion with a magnetic moment in an external electric field do exist even if the Dirac–Pauli equation does not explicitly contain the term with the fermion mass. In addition, in centrally symmetric electric fields, there exist a countably infinite set of pairs of isolated charge-conjugate zero-energy solutions of the Dirac–Pauli equation.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N4c0d41dceda949f3a90a45dde7f4d4e8
    20 N5a43997c4b814857a98ee5e46e2be344
    21 sg:journal.1327888
    22 schema:name Neutral Fermion with a Magnetic Moment in External Electromagnetic Fields
    23 schema:pagination 354-366
    24 schema:productId N2f4630cd09d24fa0902bda331115c70c
    25 N8a292890d714442ca99f4d1744d3e3d3
    26 Nf3cf2fa11a084590b6dc992411ef560f
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015509107
    28 https://doi.org/10.1023/a:1010320001946
    29 schema:sdDatePublished 2019-04-11T01:57
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N45b0e60fed224abb8b362a288621853d
    32 schema:url http://link.springer.com/10.1023/A:1010320001946
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N2f4630cd09d24fa0902bda331115c70c schema:name doi
    37 schema:value 10.1023/a:1010320001946
    38 rdf:type schema:PropertyValue
    39 N45b0e60fed224abb8b362a288621853d schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 N4c0d41dceda949f3a90a45dde7f4d4e8 schema:issueNumber 3
    42 rdf:type schema:PublicationIssue
    43 N5a43997c4b814857a98ee5e46e2be344 schema:volumeNumber 126
    44 rdf:type schema:PublicationVolume
    45 N8a292890d714442ca99f4d1744d3e3d3 schema:name readcube_id
    46 schema:value 49e481d5c087fb192888de52a533d64308adc9888ad978ef1cab1b3bbb62851c
    47 rdf:type schema:PropertyValue
    48 Nad5ab7f6eb194298ad403d6833d813e0 rdf:first sg:person.013233115763.52
    49 rdf:rest rdf:nil
    50 Nf3cf2fa11a084590b6dc992411ef560f schema:name dimensions_id
    51 schema:value pub.1015509107
    52 rdf:type schema:PropertyValue
    53 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Physical Sciences
    55 rdf:type schema:DefinedTerm
    56 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Other Physical Sciences
    58 rdf:type schema:DefinedTerm
    59 sg:journal.1327888 schema:issn 0040-5779
    60 2305-3135
    61 schema:name Theoretical and Mathematical Physics
    62 rdf:type schema:Periodical
    63 sg:person.013233115763.52 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    64 schema:familyName Khalilov
    65 schema:givenName V. R.
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233115763.52
    67 rdf:type schema:Person
    68 sg:pub.10.1007/bf02823296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012901556
    69 https://doi.org/10.1007/bf02823296
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1103/physrev.73.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060453946
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1103/physreva.61.022101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019090314
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1103/physrevd.13.3398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060684031
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1103/physrevlett.42.1698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060783699
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1103/physrevlett.53.319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790876
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1103/physrevlett.63.380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799912
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1103/revmodphys.13.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060837127
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1142/s0217732398000668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062920779
    86 rdf:type schema:CreativeWork
    87 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
    88 schema:name Moscow State University, Moscow, Russia
    89 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...