Strain Directed Assembly of Nanoparticle Arrays Within a Semiconductor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-09

AUTHORS

C.-Y. Hung, A.F. Marshall, D.-K. Kim, W.D. Nix, J.S. Harris, R.A. Kiehl

ABSTRACT

The use of strain to direct the assembly of nanoparticle arrays in a semiconductor is investigated experimentally and theoretically. The process uses crystal strain produced by a surface structure and variations in layer composition to guide the formation of arsenic precipitates in a GaAs-based structure grown at low temperature by molecular beam epitaxy. Remarkable patterning effects, including the formation of single and double one-dimensional arrays with completely clear fields are achieved for particles in the 10-nm size regime at a depth of about 50-nm from the semiconductor surface. Experimental results on the time dependence of the strain patterning indicates that strain controls the late stage of the coarsening process, rather than the precipitate nucleation. Comparison of the observed particle distributions with theoretical calculations of the stress and strain distributions reveals that the precipitates form in regions of maximum strain energy, rather than near extremum points of hydrostatic stress or dilatation strain. It is therefore concluded that the patterning results from modulus differences between the particle and matrix materials rather than from other strain related effects. The results presented here should be useful for extending strain directed assembly to other materials systems and to other configurations of particles. More... »

PAGES

329-347

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1010052731395

DOI

http://dx.doi.org/10.1023/a:1010052731395

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028740334


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Solid State and Photonics Laboratory, Stanford University, 94305, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hung", 
        "givenName": "C.-Y.", 
        "id": "sg:person.012327542755.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012327542755.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Center for Materials Research, Stanford University, 94305, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marshall", 
        "givenName": "A.F.", 
        "id": "sg:person.011323023642.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011323023642.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Solid State and Photonics Laboratory, Stanford University, 94305, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "D.-K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Materials Science and Engineering, Stanford University, 94305, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nix", 
        "givenName": "W.D.", 
        "id": "sg:person.011557252610.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011557252610.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Solid State and Photonics Laboratory, Stanford University, 94305, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harris", 
        "givenName": "J.S.", 
        "id": "sg:person.0711567342.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711567342.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Solid State and Photonics Laboratory, Stanford University, 94305, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiehl", 
        "givenName": "R.A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-3697(61)90054-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000441444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(61)90054-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000441444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9535506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006619617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9535506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006619617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(61)90242-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012147017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(61)90242-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012147017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01418619208205601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027409277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02649990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039852215", 
          "https://doi.org/10.1007/bf02649990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02649990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039852215", 
          "https://doi.org/10.1007/bf02649990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.101229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057648813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.113944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057666913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.114782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057676124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.116419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057680632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.121824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057685989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.348867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057960845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.351200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057965334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.351538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057965909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.1871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.1871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.42.3578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060555361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.42.3578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060555361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.752518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061180030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.585741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062195788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.586122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062196169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/proc-241-113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067919836"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-09", 
    "datePublishedReg": "1999-09-01", 
    "description": "The use of strain to direct the assembly of nanoparticle arrays in a semiconductor is investigated experimentally and theoretically. The process uses crystal strain produced by a surface structure and variations in layer composition to guide the formation of arsenic precipitates in a GaAs-based structure grown at low temperature by molecular beam epitaxy. Remarkable patterning effects, including the formation of single and double one-dimensional arrays with completely clear fields are achieved for particles in the 10-nm size regime at a depth of about 50-nm from the semiconductor surface. Experimental results on the time dependence of the strain patterning indicates that strain controls the late stage of the coarsening process, rather than the precipitate nucleation. Comparison of the observed particle distributions with theoretical calculations of the stress and strain distributions reveals that the precipitates form in regions of maximum strain energy, rather than near extremum points of hydrostatic stress or dilatation strain. It is therefore concluded that the patterning results from modulus differences between the particle and matrix materials rather than from other strain related effects. The results presented here should be useful for extending strain directed assembly to other materials systems and to other configurations of particles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1010052731395", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028317", 
        "issn": [
          "1388-0764", 
          "1572-896X"
        ], 
        "name": "Journal of Nanoparticle Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Strain Directed Assembly of Nanoparticle Arrays Within a Semiconductor", 
    "pagination": "329-347", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "88e91970e6c92c2cb4629d6b09d1dbcd171aa920acfbfb9ea4d8bd21b19db01c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1010052731395"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028740334"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1010052731395", 
      "https://app.dimensions.ai/details/publication/pub.1028740334"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1010052731395"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1010052731395'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1010052731395'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1010052731395'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1010052731395'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1010052731395 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N0b306cb1a9fd42b5bb1052b1b75a673b
4 schema:citation sg:pub.10.1007/bf02649990
5 https://doi.org/10.1016/0001-6160(61)90242-5
6 https://doi.org/10.1016/0022-3697(61)90054-3
7 https://doi.org/10.1021/jp9535506
8 https://doi.org/10.1063/1.101229
9 https://doi.org/10.1063/1.113944
10 https://doi.org/10.1063/1.114782
11 https://doi.org/10.1063/1.116419
12 https://doi.org/10.1063/1.121824
13 https://doi.org/10.1063/1.348867
14 https://doi.org/10.1063/1.351200
15 https://doi.org/10.1063/1.351538
16 https://doi.org/10.1080/01418619208205601
17 https://doi.org/10.1103/physrevb.39.1871
18 https://doi.org/10.1103/physrevb.42.3578
19 https://doi.org/10.1109/5.752518
20 https://doi.org/10.1116/1.585741
21 https://doi.org/10.1116/1.586122
22 https://doi.org/10.1557/proc-241-113
23 schema:datePublished 1999-09
24 schema:datePublishedReg 1999-09-01
25 schema:description The use of strain to direct the assembly of nanoparticle arrays in a semiconductor is investigated experimentally and theoretically. The process uses crystal strain produced by a surface structure and variations in layer composition to guide the formation of arsenic precipitates in a GaAs-based structure grown at low temperature by molecular beam epitaxy. Remarkable patterning effects, including the formation of single and double one-dimensional arrays with completely clear fields are achieved for particles in the 10-nm size regime at a depth of about 50-nm from the semiconductor surface. Experimental results on the time dependence of the strain patterning indicates that strain controls the late stage of the coarsening process, rather than the precipitate nucleation. Comparison of the observed particle distributions with theoretical calculations of the stress and strain distributions reveals that the precipitates form in regions of maximum strain energy, rather than near extremum points of hydrostatic stress or dilatation strain. It is therefore concluded that the patterning results from modulus differences between the particle and matrix materials rather than from other strain related effects. The results presented here should be useful for extending strain directed assembly to other materials systems and to other configurations of particles.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N4e41d6485c6b4a569c29a8ba77f9c58a
30 N51baf282f49c4a08b66be1667661089b
31 sg:journal.1028317
32 schema:name Strain Directed Assembly of Nanoparticle Arrays Within a Semiconductor
33 schema:pagination 329-347
34 schema:productId N0a05e5311a9048f8bc0ef7d03a96c47b
35 N648632075f594c7d96255a120b570887
36 Ndf04929e79104bedaea306235ca4a221
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028740334
38 https://doi.org/10.1023/a:1010052731395
39 schema:sdDatePublished 2019-04-10T18:17
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nd180813afda647ac87a5e83ce8d80b36
42 schema:url http://link.springer.com/10.1023/A:1010052731395
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N0a05e5311a9048f8bc0ef7d03a96c47b schema:name dimensions_id
47 schema:value pub.1028740334
48 rdf:type schema:PropertyValue
49 N0b306cb1a9fd42b5bb1052b1b75a673b rdf:first sg:person.012327542755.55
50 rdf:rest Ncb68eb0f5c5049f6b67bc54eaacdbadb
51 N0b5465438c634bf48b9df33c8cd8ca68 rdf:first Ne43b59ff5c534d4daef4e3e317923c94
52 rdf:rest Nf3574b009e174770b8f0cf865bfe4a90
53 N1144c47b5e0f4e7ea22cbb287093db26 rdf:first sg:person.0711567342.69
54 rdf:rest N8f28669be1ea4c2aac326cb3dabe900d
55 N4e41d6485c6b4a569c29a8ba77f9c58a schema:issueNumber 3
56 rdf:type schema:PublicationIssue
57 N51baf282f49c4a08b66be1667661089b schema:volumeNumber 1
58 rdf:type schema:PublicationVolume
59 N648632075f594c7d96255a120b570887 schema:name doi
60 schema:value 10.1023/a:1010052731395
61 rdf:type schema:PropertyValue
62 N8f28669be1ea4c2aac326cb3dabe900d rdf:first Nc50bbaf0668842b49bc071f56112ce3c
63 rdf:rest rdf:nil
64 Nc50bbaf0668842b49bc071f56112ce3c schema:affiliation https://www.grid.ac/institutes/grid.168010.e
65 schema:familyName Kiehl
66 schema:givenName R.A.
67 rdf:type schema:Person
68 Ncb68eb0f5c5049f6b67bc54eaacdbadb rdf:first sg:person.011323023642.60
69 rdf:rest N0b5465438c634bf48b9df33c8cd8ca68
70 Nd180813afda647ac87a5e83ce8d80b36 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Ndf04929e79104bedaea306235ca4a221 schema:name readcube_id
73 schema:value 88e91970e6c92c2cb4629d6b09d1dbcd171aa920acfbfb9ea4d8bd21b19db01c
74 rdf:type schema:PropertyValue
75 Ne43b59ff5c534d4daef4e3e317923c94 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
76 schema:familyName Kim
77 schema:givenName D.-K.
78 rdf:type schema:Person
79 Nf3574b009e174770b8f0cf865bfe4a90 rdf:first sg:person.011557252610.51
80 rdf:rest N1144c47b5e0f4e7ea22cbb287093db26
81 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
82 schema:name Chemical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
85 schema:name Physical Chemistry (incl. Structural)
86 rdf:type schema:DefinedTerm
87 sg:journal.1028317 schema:issn 1388-0764
88 1572-896X
89 schema:name Journal of Nanoparticle Research
90 rdf:type schema:Periodical
91 sg:person.011323023642.60 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
92 schema:familyName Marshall
93 schema:givenName A.F.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011323023642.60
95 rdf:type schema:Person
96 sg:person.011557252610.51 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
97 schema:familyName Nix
98 schema:givenName W.D.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011557252610.51
100 rdf:type schema:Person
101 sg:person.012327542755.55 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
102 schema:familyName Hung
103 schema:givenName C.-Y.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012327542755.55
105 rdf:type schema:Person
106 sg:person.0711567342.69 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
107 schema:familyName Harris
108 schema:givenName J.S.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711567342.69
110 rdf:type schema:Person
111 sg:pub.10.1007/bf02649990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039852215
112 https://doi.org/10.1007/bf02649990
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0001-6160(61)90242-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012147017
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0022-3697(61)90054-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000441444
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1021/jp9535506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006619617
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1063/1.101229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057648813
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1063/1.113944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057666913
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1063/1.114782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057676124
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1063/1.116419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057680632
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1063/1.121824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057685989
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1063/1.348867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057960845
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1063/1.351200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057965334
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.351538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057965909
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1080/01418619208205601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027409277
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevb.39.1871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060549075
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevb.42.3578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060555361
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/5.752518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061180030
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1116/1.585741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062195788
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1116/1.586122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062196169
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1557/proc-241-113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067919836
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
151 schema:name Center for Materials Research, Stanford University, 94305, Stanford, CA, USA
152 Department of Materials Science and Engineering, Stanford University, 94305, Stanford, CA, USA
153 Solid State and Photonics Laboratory, Stanford University, 94305, Stanford, CA, USA
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...