Development of community metrics to evaluate recovery of Minnesota wetlands View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-09

AUTHORS

Susan M. Galatowitsch, Diane C. Whited, John R. Tester

ABSTRACT

Monitoring wetland recovery requires assessment tools that efficiently and reliably discern ecosystem changes in response to changes in land use. The biological indicator approach pioneered for rivers and streams that uses changes in species assemblages to interpret degradation levels may be a promising monitoring approach for wetlands. We explored how well metrics based on species assemblages related to land use patterns for eight kinds of wetlands in Minnesota. We evaluated land use on site and within 500 m,1000 m, 2500 m and 5000 m of riverine, littoral, and depressional wetlands (n = 116) in three ecoregions. Proportion of agriculture, urban, grassland, forest,and water were correlated with metrics developed from plant, bird, fish, invertebrate, and amphibian community data collected from field surveys. We found79 metrics that relate to land use, including five that may be useful for many wetlands: proportion of wetland birds, wetland bird richness, proportion of insectivorous birds, importance of Carex, importance of invasive perennials. Since very few metrics were significant for even one-half of the wetland types surveyed, our data suggest that monitoring recovery in wetlands with community indicators will likely require different metrics,depending on type and ecoregion. In addition, wetlands within extensively degraded ecoregions may be most problematic for indicator development because biotic degradation is historic and severe. More... »

PAGES

217-234

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1009935402572

DOI

http://dx.doi.org/10.1023/a:1009935402572

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011350999


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Science and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departments of Horticultural Science and Landscape Architecture, University of Minnesota, 55108, St. Paul, MN, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Departments of Horticultural Science and Landscape Architecture, University of Minnesota, 55108, St. Paul, MN, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galatowitsch", 
        "givenName": "Susan M.", 
        "id": "sg:person.014173700615.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014173700615.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departments of Horticultural Science and Landscape Architecture, University of Minnesota, 55108, St. Paul, MN, U.S.A.", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Departments of Horticultural Science and Landscape Architecture, University of Minnesota, 55108, St. Paul, MN, U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Whited", 
        "givenName": "Diane C.", 
        "id": "sg:person.01046612227.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046612227.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Ecology, Evolution, and Behavior, University of Minnesota, 55108, St. Paul, MN, U.S.A", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Ecology, Evolution, and Behavior, University of Minnesota, 55108, St. Paul, MN, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tester", 
        "givenName": "John R.", 
        "id": "sg:person.014402355740.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014402355740.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00021291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047573606", 
          "https://doi.org/10.1007/bf00021291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00125093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035139542", 
          "https://doi.org/10.1007/bf00125093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01867324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034355600", 
          "https://doi.org/10.1007/bf01867324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03160866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036447941", 
          "https://doi.org/10.1007/bf03160866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02589628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013791967", 
          "https://doi.org/10.1007/bf02589628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03160881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011376089", 
          "https://doi.org/10.1007/bf03160881"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-09", 
    "datePublishedReg": "1998-09-01", 
    "description": "Monitoring wetland recovery requires assessment tools that efficiently and reliably discern ecosystem changes in response to changes in land use. The biological indicator approach pioneered for rivers and streams that uses changes in species assemblages to interpret degradation levels may be a promising monitoring approach for wetlands. We explored how well metrics based on species assemblages related to land use patterns for eight kinds of wetlands in Minnesota. We evaluated land use on site and within 500 m,1000 m, 2500 m and 5000 m of riverine, littoral, and depressional wetlands (n = 116) in three ecoregions. Proportion of agriculture, urban, grassland, forest,and water were correlated with metrics developed from plant, bird, fish, invertebrate, and amphibian community data collected from field surveys. We found79 metrics that relate to land use, including five that may be useful for many wetlands: proportion of wetland birds, wetland bird richness, proportion of insectivorous birds, importance of Carex, importance of invasive perennials. Since very few metrics were significant for even one-half of the wetland types surveyed, our data suggest that monitoring recovery in wetlands with community indicators will likely require different metrics,depending on type and ecoregion. In addition, wetlands within extensively degraded ecoregions may be most problematic for indicator development because biotic degradation is historic and severe.", 
    "genre": "article", 
    "id": "sg:pub.10.1023/a:1009935402572", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295340", 
        "issn": [
          "1386-1980", 
          "1573-5141"
        ], 
        "name": "Journal of Aquatic Ecosystem Stress and Recovery", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "keywords": [
      "land use", 
      "species assemblages", 
      "land use patterns", 
      "proportion of agriculture", 
      "kinds of wetlands", 
      "bird richness", 
      "invasive perennial", 
      "wetland birds", 
      "wetland recovery", 
      "ecosystem changes", 
      "insectivorous birds", 
      "community metrics", 
      "depressional wetlands", 
      "wetland types", 
      "community indicators", 
      "community data", 
      "biotic degradation", 
      "Minnesota wetlands", 
      "indicator approach", 
      "wetlands", 
      "use patterns", 
      "indicator development", 
      "field survey", 
      "ecoregions", 
      "birds", 
      "degradation level", 
      "monitoring approach", 
      "assemblages", 
      "assessment tool", 
      "grassland", 
      "richness", 
      "forest", 
      "different metrics", 
      "perennials", 
      "riverine", 
      "Carex", 
      "agriculture", 
      "River", 
      "metrics", 
      "proportion", 
      "fish", 
      "changes", 
      "plants", 
      "importance", 
      "Minnesota", 
      "water", 
      "indicators", 
      "Urban", 
      "degradation", 
      "streams", 
      "sites", 
      "recovery", 
      "use", 
      "types", 
      "patterns", 
      "one-half", 
      "survey", 
      "development", 
      "data", 
      "approach", 
      "tool", 
      "response", 
      "levels", 
      "addition", 
      "kind", 
      "discern ecosystem changes", 
      "biological indicator approach", 
      "promising monitoring approach", 
      "amphibian community data", 
      "importance of Carex", 
      "degraded ecoregions"
    ], 
    "name": "Development of community metrics to evaluate recovery of Minnesota wetlands", 
    "pagination": "217-234", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011350999"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1009935402572"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1009935402572", 
      "https://app.dimensions.ai/details/publication/pub.1011350999"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_263.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1023/a:1009935402572"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1009935402572'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1009935402572'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1009935402572'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1009935402572'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      22 PREDICATES      105 URIs      89 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1009935402572 schema:about anzsrc-for:05
2 anzsrc-for:0502
3 anzsrc-for:06
4 anzsrc-for:0602
5 schema:author Ndde08f02d393415ea7c72cfc3fefe8b2
6 schema:citation sg:pub.10.1007/bf00021291
7 sg:pub.10.1007/bf00125093
8 sg:pub.10.1007/bf01867324
9 sg:pub.10.1007/bf02589628
10 sg:pub.10.1007/bf03160866
11 sg:pub.10.1007/bf03160881
12 schema:datePublished 1998-09
13 schema:datePublishedReg 1998-09-01
14 schema:description Monitoring wetland recovery requires assessment tools that efficiently and reliably discern ecosystem changes in response to changes in land use. The biological indicator approach pioneered for rivers and streams that uses changes in species assemblages to interpret degradation levels may be a promising monitoring approach for wetlands. We explored how well metrics based on species assemblages related to land use patterns for eight kinds of wetlands in Minnesota. We evaluated land use on site and within 500 m,1000 m, 2500 m and 5000 m of riverine, littoral, and depressional wetlands (n = 116) in three ecoregions. Proportion of agriculture, urban, grassland, forest,and water were correlated with metrics developed from plant, bird, fish, invertebrate, and amphibian community data collected from field surveys. We found79 metrics that relate to land use, including five that may be useful for many wetlands: proportion of wetland birds, wetland bird richness, proportion of insectivorous birds, importance of Carex, importance of invasive perennials. Since very few metrics were significant for even one-half of the wetland types surveyed, our data suggest that monitoring recovery in wetlands with community indicators will likely require different metrics,depending on type and ecoregion. In addition, wetlands within extensively degraded ecoregions may be most problematic for indicator development because biotic degradation is historic and severe.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N8414cadd36134d6bb9a4b7a20ade7e98
19 Nf5d679f761bb4c79a66d7c8cfde31549
20 sg:journal.1295340
21 schema:keywords Carex
22 Minnesota
23 Minnesota wetlands
24 River
25 Urban
26 addition
27 agriculture
28 amphibian community data
29 approach
30 assemblages
31 assessment tool
32 biological indicator approach
33 biotic degradation
34 bird richness
35 birds
36 changes
37 community data
38 community indicators
39 community metrics
40 data
41 degradation
42 degradation level
43 degraded ecoregions
44 depressional wetlands
45 development
46 different metrics
47 discern ecosystem changes
48 ecoregions
49 ecosystem changes
50 field survey
51 fish
52 forest
53 grassland
54 importance
55 importance of Carex
56 indicator approach
57 indicator development
58 indicators
59 insectivorous birds
60 invasive perennial
61 kind
62 kinds of wetlands
63 land use
64 land use patterns
65 levels
66 metrics
67 monitoring approach
68 one-half
69 patterns
70 perennials
71 plants
72 promising monitoring approach
73 proportion
74 proportion of agriculture
75 recovery
76 response
77 richness
78 riverine
79 sites
80 species assemblages
81 streams
82 survey
83 tool
84 types
85 use
86 use patterns
87 water
88 wetland birds
89 wetland recovery
90 wetland types
91 wetlands
92 schema:name Development of community metrics to evaluate recovery of Minnesota wetlands
93 schema:pagination 217-234
94 schema:productId Nad15a21b13564a0d93157778a4a56db3
95 Ne021c64c4ed943f0a5b99099a253897d
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011350999
97 https://doi.org/10.1023/a:1009935402572
98 schema:sdDatePublished 2022-01-01T18:07
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N6a14b7b2fcde42e3b3b56672ab25851b
101 schema:url https://doi.org/10.1023/a:1009935402572
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N5be54095ad914bc5b604cc3285251bee rdf:first sg:person.014402355740.71
106 rdf:rest rdf:nil
107 N6a14b7b2fcde42e3b3b56672ab25851b schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N716b92d546d14ef383e8f7fb8df18505 rdf:first sg:person.01046612227.58
110 rdf:rest N5be54095ad914bc5b604cc3285251bee
111 N8414cadd36134d6bb9a4b7a20ade7e98 schema:issueNumber 3
112 rdf:type schema:PublicationIssue
113 Nad15a21b13564a0d93157778a4a56db3 schema:name dimensions_id
114 schema:value pub.1011350999
115 rdf:type schema:PropertyValue
116 Ndde08f02d393415ea7c72cfc3fefe8b2 rdf:first sg:person.014173700615.52
117 rdf:rest N716b92d546d14ef383e8f7fb8df18505
118 Ne021c64c4ed943f0a5b99099a253897d schema:name doi
119 schema:value 10.1023/a:1009935402572
120 rdf:type schema:PropertyValue
121 Nf5d679f761bb4c79a66d7c8cfde31549 schema:volumeNumber 6
122 rdf:type schema:PublicationVolume
123 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
124 schema:name Environmental Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
127 schema:name Environmental Science and Management
128 rdf:type schema:DefinedTerm
129 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
130 schema:name Biological Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
133 schema:name Ecology
134 rdf:type schema:DefinedTerm
135 sg:journal.1295340 schema:issn 1386-1980
136 1573-5141
137 schema:name Journal of Aquatic Ecosystem Stress and Recovery
138 schema:publisher Springer Nature
139 rdf:type schema:Periodical
140 sg:person.01046612227.58 schema:affiliation grid-institutes:grid.17635.36
141 schema:familyName Whited
142 schema:givenName Diane C.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046612227.58
144 rdf:type schema:Person
145 sg:person.014173700615.52 schema:affiliation grid-institutes:grid.17635.36
146 schema:familyName Galatowitsch
147 schema:givenName Susan M.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014173700615.52
149 rdf:type schema:Person
150 sg:person.014402355740.71 schema:affiliation grid-institutes:grid.17635.36
151 schema:familyName Tester
152 schema:givenName John R.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014402355740.71
154 rdf:type schema:Person
155 sg:pub.10.1007/bf00021291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047573606
156 https://doi.org/10.1007/bf00021291
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/bf00125093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035139542
159 https://doi.org/10.1007/bf00125093
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/bf01867324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034355600
162 https://doi.org/10.1007/bf01867324
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/bf02589628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013791967
165 https://doi.org/10.1007/bf02589628
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/bf03160866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036447941
168 https://doi.org/10.1007/bf03160866
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/bf03160881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011376089
171 https://doi.org/10.1007/bf03160881
172 rdf:type schema:CreativeWork
173 grid-institutes:grid.17635.36 schema:alternateName Department of Ecology, Evolution, and Behavior, University of Minnesota, 55108, St. Paul, MN, U.S.A
174 Departments of Horticultural Science and Landscape Architecture, University of Minnesota, 55108, St. Paul, MN, U.S.A.
175 schema:name Department of Ecology, Evolution, and Behavior, University of Minnesota, 55108, St. Paul, MN, U.S.A
176 Departments of Horticultural Science and Landscape Architecture, University of Minnesota, 55108, St. Paul, MN, U.S.A.
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...