Tail Behavior, Modes and other Characteristics of Stable Distributions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-03

AUTHORS

Hippolyte Fofack, John P. Nolan

ABSTRACT

Stable distributions have heavy tails that are asymptotically Paretian. Accurate computations of stable densities and distribution functions are used to analyze when the Paretian tail actually appears. Implications for estimation procedures are discussed. In addition to numerically locating the mode of a general stable distribution, analytic and numeric results are given for the mode. Extensive tables of stable percentiles have been computed; aspects of these tables and the appropriateness of infinite variance stable models are discussed. More... »

PAGES

39-58

References to SciGraph publications

  • 1978-12. On distribution functions of class L in PROBABILITY THEORY AND RELATED FIELDS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1009908026279

    DOI

    http://dx.doi.org/10.1023/a:1009908026279

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026432584


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Economics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Econometrics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Statistics, American University, 4400 Massachusetts Avenue, NW, 20016, Washington, DC", 
              "id": "http://www.grid.ac/institutes/grid.63124.32", 
              "name": [
                "Department of Mathematics and Statistics, American University, 4400 Massachusetts Avenue, NW, 20016, Washington, DC"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fofack", 
            "givenName": "Hippolyte", 
            "id": "sg:person.014771550543.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014771550543.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Statistics, American University, 4400 Massachusetts Avenue, NW, 20016, Washington, DC", 
              "id": "http://www.grid.ac/institutes/grid.63124.32", 
              "name": [
                "Department of Mathematics and Statistics, American University, 4400 Massachusetts Avenue, NW, 20016, Washington, DC"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nolan", 
            "givenName": "John P.", 
            "id": "sg:person.011672042647.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011672042647.68"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00534763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012034958", 
              "https://doi.org/10.1007/bf00534763"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-03", 
        "datePublishedReg": "1999-03-01", 
        "description": "Stable distributions have heavy tails that are asymptotically Paretian. Accurate computations of stable densities and distribution functions are used to analyze when the Paretian tail actually appears. Implications for estimation procedures are discussed. In addition to numerically locating the mode of a general stable distribution, analytic and numeric results are given for the mode. Extensive tables of stable percentiles have been computed; aspects of these tables and the appropriateness of infinite variance stable models are discussed.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1009908026279", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1047855", 
            "issn": [
              "1386-1999", 
              "1572-915X"
            ], 
            "name": "Extremes", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "keywords": [
          "stable distribution", 
          "general stable distribution", 
          "heavy tails", 
          "estimation procedure", 
          "tail behavior", 
          "stable models", 
          "implications", 
          "distribution", 
          "appropriateness", 
          "model", 
          "tail", 
          "numeric results", 
          "table", 
          "aspects", 
          "behavior", 
          "results", 
          "extensive tables", 
          "characteristics", 
          "distribution function", 
          "percentile", 
          "stable densities", 
          "function", 
          "addition", 
          "procedure", 
          "mode", 
          "accurate computation", 
          "computation", 
          "density", 
          "Paretian tail", 
          "stable percentiles", 
          "infinite variance stable models", 
          "variance stable models"
        ], 
        "name": "Tail Behavior, Modes and other Characteristics of Stable Distributions", 
        "pagination": "39-58", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026432584"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1009908026279"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1009908026279", 
          "https://app.dimensions.ai/details/publication/pub.1026432584"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_328.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1009908026279"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1009908026279'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1009908026279'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1009908026279'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1009908026279'


     

    This table displays all metadata directly associated to this object as RDF triples.

    101 TRIPLES      22 PREDICATES      59 URIs      50 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1009908026279 schema:about anzsrc-for:14
    2 anzsrc-for:1403
    3 schema:author Nde9e886372364509931399e277ce92da
    4 schema:citation sg:pub.10.1007/bf00534763
    5 schema:datePublished 1999-03
    6 schema:datePublishedReg 1999-03-01
    7 schema:description Stable distributions have heavy tails that are asymptotically Paretian. Accurate computations of stable densities and distribution functions are used to analyze when the Paretian tail actually appears. Implications for estimation procedures are discussed. In addition to numerically locating the mode of a general stable distribution, analytic and numeric results are given for the mode. Extensive tables of stable percentiles have been computed; aspects of these tables and the appropriateness of infinite variance stable models are discussed.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N9b24aba6abf74ce8a082b51106457531
    12 Nd49008e4167246b5bdcd55d605611d9c
    13 sg:journal.1047855
    14 schema:keywords Paretian tail
    15 accurate computation
    16 addition
    17 appropriateness
    18 aspects
    19 behavior
    20 characteristics
    21 computation
    22 density
    23 distribution
    24 distribution function
    25 estimation procedure
    26 extensive tables
    27 function
    28 general stable distribution
    29 heavy tails
    30 implications
    31 infinite variance stable models
    32 mode
    33 model
    34 numeric results
    35 percentile
    36 procedure
    37 results
    38 stable densities
    39 stable distribution
    40 stable models
    41 stable percentiles
    42 table
    43 tail
    44 tail behavior
    45 variance stable models
    46 schema:name Tail Behavior, Modes and other Characteristics of Stable Distributions
    47 schema:pagination 39-58
    48 schema:productId N2c0960ccf6564c64a1ea356464d8ca64
    49 N992c386b37064f1b97d2915000cd5b7a
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026432584
    51 https://doi.org/10.1023/a:1009908026279
    52 schema:sdDatePublished 2021-11-01T18:04
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher Na8619712e2ff4fc89b0f2ec7c65f0817
    55 schema:url https://doi.org/10.1023/a:1009908026279
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N2c0960ccf6564c64a1ea356464d8ca64 schema:name dimensions_id
    60 schema:value pub.1026432584
    61 rdf:type schema:PropertyValue
    62 N797f634172a84b5b9088030b8bb886c3 rdf:first sg:person.011672042647.68
    63 rdf:rest rdf:nil
    64 N992c386b37064f1b97d2915000cd5b7a schema:name doi
    65 schema:value 10.1023/a:1009908026279
    66 rdf:type schema:PropertyValue
    67 N9b24aba6abf74ce8a082b51106457531 schema:issueNumber 1
    68 rdf:type schema:PublicationIssue
    69 Na8619712e2ff4fc89b0f2ec7c65f0817 schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 Nd49008e4167246b5bdcd55d605611d9c schema:volumeNumber 2
    72 rdf:type schema:PublicationVolume
    73 Nde9e886372364509931399e277ce92da rdf:first sg:person.014771550543.00
    74 rdf:rest N797f634172a84b5b9088030b8bb886c3
    75 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Economics
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Econometrics
    80 rdf:type schema:DefinedTerm
    81 sg:journal.1047855 schema:issn 1386-1999
    82 1572-915X
    83 schema:name Extremes
    84 schema:publisher Springer Nature
    85 rdf:type schema:Periodical
    86 sg:person.011672042647.68 schema:affiliation grid-institutes:grid.63124.32
    87 schema:familyName Nolan
    88 schema:givenName John P.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011672042647.68
    90 rdf:type schema:Person
    91 sg:person.014771550543.00 schema:affiliation grid-institutes:grid.63124.32
    92 schema:familyName Fofack
    93 schema:givenName Hippolyte
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014771550543.00
    95 rdf:type schema:Person
    96 sg:pub.10.1007/bf00534763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012034958
    97 https://doi.org/10.1007/bf00534763
    98 rdf:type schema:CreativeWork
    99 grid-institutes:grid.63124.32 schema:alternateName Department of Mathematics and Statistics, American University, 4400 Massachusetts Avenue, NW, 20016, Washington, DC
    100 schema:name Department of Mathematics and Statistics, American University, 4400 Massachusetts Avenue, NW, 20016, Washington, DC
    101 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...