Commutativity of the Arens product in lattice ordered algebras View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-12

AUTHORS

J.J. Grobler

ABSTRACT

Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\text{A}}$$ \end{document} be an Abelian Archimedean lattice ordered algebra. The order bidual \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${A''}$$ \end{document} furnished with the Arens product is again a lattice ordered algebra. We show that the order continuous order bidual \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(A')'_n$$ \end{document} is Abelian. This solves an open problem and improves a result of Scheffold, who proved it for the case of normed lattice ordered algebras. The proof is based on the ‘up-down-up’ approximation of positive elements in the order continuous order bidual \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(A')'_n$$ \end{document} by elements in the canonical image \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\widehat A}$$ \end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A$$ \end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(A')'_n$$ \end{document} Components of positive elements in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\widehat A}$$ \end{document} are characterized and the result is applied to the Arens product of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f$$ \end{document}-and almost \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f$$ \end{document}-algebras. More... »

PAGES

357-364

References to SciGraph publications

  • 1985-10. Ideals and bands in principal modules in ARCHIV DER MATHEMATIK
  • 1983-06. The components of a positive operator in MATHEMATISCHE ZEITSCHRIFT
  • 1951-03. Operations induced in function classes in MONATSHEFTE FÜR MATHEMATIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1023/a:1009880911903

    DOI

    http://dx.doi.org/10.1023/a:1009880911903

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1049913460


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Applied Mathematics, Potchefstroom University for CHE, 2520, Potchefstroom, South Africa", 
              "id": "http://www.grid.ac/institutes/grid.25881.36", 
              "name": [
                "Department of Mathematics and Applied Mathematics, Potchefstroom University for CHE, 2520, Potchefstroom, South Africa"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grobler", 
            "givenName": "J.J.", 
            "id": "sg:person.014326465431.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326465431.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01300644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003497684", 
              "https://doi.org/10.1007/bf01300644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01198233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041272999", 
              "https://doi.org/10.1007/bf01198233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01252860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038123001", 
              "https://doi.org/10.1007/bf01252860"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-12", 
        "datePublishedReg": "1999-12-01", 
        "description": "Let \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$${\\text{A}}$$\n\\end{document} be an Abelian Archimedean lattice ordered algebra. The order bidual \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$${A''}$$\n\\end{document} furnished with the Arens product is again a lattice ordered algebra. We show that the order continuous order bidual \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$(A')'_n$$\n\\end{document} is Abelian. This solves an open problem and improves a result of Scheffold, who proved it for the case of normed lattice ordered algebras. The proof is based on the \u2018up-down-up\u2019 approximation of positive elements in the order continuous order bidual \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$(A')'_n$$\n\\end{document} by elements in the canonical image \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$${\\widehat A}$$\n\\end{document} of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$A$$\n\\end{document} in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$(A')'_n$$\n\\end{document} Components of positive elements in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$${\\widehat A}$$\n\\end{document} are characterized and the result is applied to the Arens product of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$f$$\n\\end{document}-and almost \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$f$$\n\\end{document}-algebras.", 
        "genre": "article", 
        "id": "sg:pub.10.1023/a:1009880911903", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1134502", 
            "issn": [
              "1385-1292", 
              "1572-9281"
            ], 
            "name": "Positivity", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "keywords": [
          "Arens product", 
          "order bidual", 
          "algebra", 
          "bidual", 
          "open problem", 
          "normed lattices", 
          "positive elements", 
          "Archimedean lattices", 
          "canonical images", 
          "lattice", 
          "approximation", 
          "commutativity", 
          "problem", 
          "proof", 
          "elements", 
          "results", 
          "cases", 
          "products", 
          "components", 
          "up", 
          "images", 
          "Abelian Archimedean lattice", 
          "order continuous order bidual", 
          "continuous order bidual", 
          "result of Scheffold", 
          "Scheffold"
        ], 
        "name": "Commutativity of the Arens product in lattice ordered algebras", 
        "pagination": "357-364", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1049913460"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1023/a:1009880911903"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1023/a:1009880911903", 
          "https://app.dimensions.ai/details/publication/pub.1049913460"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_334.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1023/a:1009880911903"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1009880911903'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1009880911903'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1009880911903'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1009880911903'


     

    This table displays all metadata directly associated to this object as RDF triples.

    96 TRIPLES      22 PREDICATES      55 URIs      44 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1023/a:1009880911903 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N75fbd47ad0ee481a8040ec8e13e9858a
    4 schema:citation sg:pub.10.1007/bf01198233
    5 sg:pub.10.1007/bf01252860
    6 sg:pub.10.1007/bf01300644
    7 schema:datePublished 1999-12
    8 schema:datePublishedReg 1999-12-01
    9 schema:description Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\text{A}}$$ \end{document} be an Abelian Archimedean lattice ordered algebra. The order bidual \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${A''}$$ \end{document} furnished with the Arens product is again a lattice ordered algebra. We show that the order continuous order bidual \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(A')'_n$$ \end{document} is Abelian. This solves an open problem and improves a result of Scheffold, who proved it for the case of normed lattice ordered algebras. The proof is based on the ‘up-down-up’ approximation of positive elements in the order continuous order bidual \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(A')'_n$$ \end{document} by elements in the canonical image \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\widehat A}$$ \end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$A$$ \end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(A')'_n$$ \end{document} Components of positive elements in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\widehat A}$$ \end{document} are characterized and the result is applied to the Arens product of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f$$ \end{document}-and almost \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f$$ \end{document}-algebras.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf Nc010e96c623145dbbf1b3199f95f1477
    14 Ne4254f20a915468182ef7aceca3b12d4
    15 sg:journal.1134502
    16 schema:keywords Abelian Archimedean lattice
    17 Archimedean lattices
    18 Arens product
    19 Scheffold
    20 algebra
    21 approximation
    22 bidual
    23 canonical images
    24 cases
    25 commutativity
    26 components
    27 continuous order bidual
    28 elements
    29 images
    30 lattice
    31 normed lattices
    32 open problem
    33 order bidual
    34 order continuous order bidual
    35 positive elements
    36 problem
    37 products
    38 proof
    39 result of Scheffold
    40 results
    41 up
    42 schema:name Commutativity of the Arens product in lattice ordered algebras
    43 schema:pagination 357-364
    44 schema:productId N4d4effff053d45e98c3a524eaea80e8c
    45 N7db65329861d4274b20e14a743449127
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049913460
    47 https://doi.org/10.1023/a:1009880911903
    48 schema:sdDatePublished 2022-01-01T18:10
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher N8835e3956a9b4d4885efda3c311e546b
    51 schema:url https://doi.org/10.1023/a:1009880911903
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N4d4effff053d45e98c3a524eaea80e8c schema:name doi
    56 schema:value 10.1023/a:1009880911903
    57 rdf:type schema:PropertyValue
    58 N75fbd47ad0ee481a8040ec8e13e9858a rdf:first sg:person.014326465431.95
    59 rdf:rest rdf:nil
    60 N7db65329861d4274b20e14a743449127 schema:name dimensions_id
    61 schema:value pub.1049913460
    62 rdf:type schema:PropertyValue
    63 N8835e3956a9b4d4885efda3c311e546b schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Nc010e96c623145dbbf1b3199f95f1477 schema:volumeNumber 3
    66 rdf:type schema:PublicationVolume
    67 Ne4254f20a915468182ef7aceca3b12d4 schema:issueNumber 4
    68 rdf:type schema:PublicationIssue
    69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Mathematical Sciences
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Pure Mathematics
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1134502 schema:issn 1385-1292
    76 1572-9281
    77 schema:name Positivity
    78 schema:publisher Springer Nature
    79 rdf:type schema:Periodical
    80 sg:person.014326465431.95 schema:affiliation grid-institutes:grid.25881.36
    81 schema:familyName Grobler
    82 schema:givenName J.J.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326465431.95
    84 rdf:type schema:Person
    85 sg:pub.10.1007/bf01198233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041272999
    86 https://doi.org/10.1007/bf01198233
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bf01252860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038123001
    89 https://doi.org/10.1007/bf01252860
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/bf01300644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003497684
    92 https://doi.org/10.1007/bf01300644
    93 rdf:type schema:CreativeWork
    94 grid-institutes:grid.25881.36 schema:alternateName Department of Mathematics and Applied Mathematics, Potchefstroom University for CHE, 2520, Potchefstroom, South Africa
    95 schema:name Department of Mathematics and Applied Mathematics, Potchefstroom University for CHE, 2520, Potchefstroom, South Africa
    96 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...