Mapping historical forest types in Baraga County Michigan, USA as fuzzy sets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-01

AUTHORS

Daniel G. Brown

ABSTRACT

Data on tree location and species in a portion of Northern Michigan were gathered from General Land Office (GLO) survey notes (ca. 1850), digitized, and generalized to represent forest types. Fuzzy membership values describing the degree of membership of each species in each forest type were derived from (a) semantic information in the forestry literature and (b) a fuzzy clustering routine applied to data from randomly placed circular plots. The fuzzy membership values assigned to each tree point for each forest type were interpolated to form continuous surfaces using kriging and co-kriging. Advantages of this method over traditional discrete mapping methods include: (a) multiple options are available for the display and analysis; (b) classification uncertainty and the continuity of natural vegetation can be represented; and (c) the classification scheme is applied systematically across the entire map area and can be altered to produce alternative maps. The subset of available display and analytical products presented include: discrete forest type maps; a surface representing the confusion between forest types; fuzzy logical overlays of forest types; and discrete class maps with color value altered within each class to indicate degree of confusion at each location. More... »

PAGES

97-111

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1023/a:1009796502293

DOI

http://dx.doi.org/10.1023/a:1009796502293

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003143120


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0705", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Forestry Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Michigan State University", 
          "id": "https://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Department of Geography, Michigan State University, 48824-1115, East Lansing, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "Daniel G.", 
        "id": "sg:person.012325635457.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012325635457.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/02693799608902098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001962525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(65)90241-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009640697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2389.1989.tb01290.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012819936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00031681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014132479", 
          "https://doi.org/10.1007/bf00031681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00031681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014132479", 
          "https://doi.org/10.1007/bf00031681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02854819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018159378", 
          "https://doi.org/10.1007/bf02854819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00038686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018278090", 
          "https://doi.org/10.1007/bf00038686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00038686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018278090", 
          "https://doi.org/10.1007/bf00038686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00039905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019369189", 
          "https://doi.org/10.1007/bf00039905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00039905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019369189", 
          "https://doi.org/10.1007/bf00039905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2937096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029024001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0198-9715(88)90012-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032457902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0033-5894(74)90019-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039079531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0098-3004(84)90020-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041496652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0098-3004(84)90020-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041496652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02858667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044595134", 
          "https://doi.org/10.1007/bf02858667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02858667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044595134", 
          "https://doi.org/10.1007/bf02858667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1932609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069656945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1933067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069657355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2426297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069928907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/622687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070662702"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-01", 
    "datePublishedReg": "1998-01-01", 
    "description": "Data on tree location and species in a portion of Northern Michigan were gathered from General Land Office (GLO) survey notes (ca. 1850), digitized, and generalized to represent forest types. Fuzzy membership values describing the degree of membership of each species in each forest type were derived from (a) semantic information in the forestry literature and (b) a fuzzy clustering routine applied to data from randomly placed circular plots. The fuzzy membership values assigned to each tree point for each forest type were interpolated to form continuous surfaces using kriging and co-kriging. Advantages of this method over traditional discrete mapping methods include: (a) multiple options are available for the display and analysis; (b) classification uncertainty and the continuity of natural vegetation can be represented; and (c) the classification scheme is applied systematically across the entire map area and can be altered to produce alternative maps. The subset of available display and analytical products presented include: discrete forest type maps; a surface representing the confusion between forest types; fuzzy logical overlays of forest types; and discrete class maps with color value altered within each class to indicate degree of confusion at each location.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1023/a:1009796502293", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047114", 
        "issn": [
          "0042-3106", 
          "1385-0237"
        ], 
        "name": "Plant Ecology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "134"
      }
    ], 
    "name": "Mapping historical forest types in Baraga County Michigan, USA as fuzzy sets", 
    "pagination": "97-111", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0ef8b92fa9009f440c46056b86856e2fa5e6329062e8ad8a2d7edb5ceff101e9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1023/a:1009796502293"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003143120"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1023/a:1009796502293", 
      "https://app.dimensions.ai/details/publication/pub.1003143120"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1023/A:1009796502293"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1023/a:1009796502293'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1023/a:1009796502293'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1023/a:1009796502293'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1023/a:1009796502293'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1023/a:1009796502293 schema:about anzsrc-for:07
2 anzsrc-for:0705
3 schema:author N56c10051a4284ea28559de9d3039889a
4 schema:citation sg:pub.10.1007/bf00031681
5 sg:pub.10.1007/bf00038686
6 sg:pub.10.1007/bf00039905
7 sg:pub.10.1007/bf02854819
8 sg:pub.10.1007/bf02858667
9 https://doi.org/10.1016/0033-5894(74)90019-2
10 https://doi.org/10.1016/0098-3004(84)90020-7
11 https://doi.org/10.1016/0198-9715(88)90012-9
12 https://doi.org/10.1016/s0019-9958(65)90241-x
13 https://doi.org/10.1080/02693799608902098
14 https://doi.org/10.1111/j.1365-2389.1989.tb01290.x
15 https://doi.org/10.2307/1932609
16 https://doi.org/10.2307/1933067
17 https://doi.org/10.2307/2426297
18 https://doi.org/10.2307/2937096
19 https://doi.org/10.2307/622687
20 schema:datePublished 1998-01
21 schema:datePublishedReg 1998-01-01
22 schema:description Data on tree location and species in a portion of Northern Michigan were gathered from General Land Office (GLO) survey notes (ca. 1850), digitized, and generalized to represent forest types. Fuzzy membership values describing the degree of membership of each species in each forest type were derived from (a) semantic information in the forestry literature and (b) a fuzzy clustering routine applied to data from randomly placed circular plots. The fuzzy membership values assigned to each tree point for each forest type were interpolated to form continuous surfaces using kriging and co-kriging. Advantages of this method over traditional discrete mapping methods include: (a) multiple options are available for the display and analysis; (b) classification uncertainty and the continuity of natural vegetation can be represented; and (c) the classification scheme is applied systematically across the entire map area and can be altered to produce alternative maps. The subset of available display and analytical products presented include: discrete forest type maps; a surface representing the confusion between forest types; fuzzy logical overlays of forest types; and discrete class maps with color value altered within each class to indicate degree of confusion at each location.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N91de490eab6149cfad609b7b88872a44
27 Nb920708cc1fa40ee8990ed28c4bb6fd5
28 sg:journal.1047114
29 schema:name Mapping historical forest types in Baraga County Michigan, USA as fuzzy sets
30 schema:pagination 97-111
31 schema:productId N5d06813da7ec47fab84ea48f19a2ffd4
32 Na7be89cd379743c7a1a7ad4021adbca1
33 Ne90dec11842840f9af036ab18d70c6b3
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003143120
35 https://doi.org/10.1023/a:1009796502293
36 schema:sdDatePublished 2019-04-10T21:33
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nc6a3d260840f4975be25609f1fb67b85
39 schema:url http://link.springer.com/10.1023/A:1009796502293
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N56c10051a4284ea28559de9d3039889a rdf:first sg:person.012325635457.31
44 rdf:rest rdf:nil
45 N5d06813da7ec47fab84ea48f19a2ffd4 schema:name doi
46 schema:value 10.1023/a:1009796502293
47 rdf:type schema:PropertyValue
48 N91de490eab6149cfad609b7b88872a44 schema:volumeNumber 134
49 rdf:type schema:PublicationVolume
50 Na7be89cd379743c7a1a7ad4021adbca1 schema:name readcube_id
51 schema:value 0ef8b92fa9009f440c46056b86856e2fa5e6329062e8ad8a2d7edb5ceff101e9
52 rdf:type schema:PropertyValue
53 Nb920708cc1fa40ee8990ed28c4bb6fd5 schema:issueNumber 1
54 rdf:type schema:PublicationIssue
55 Nc6a3d260840f4975be25609f1fb67b85 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Ne90dec11842840f9af036ab18d70c6b3 schema:name dimensions_id
58 schema:value pub.1003143120
59 rdf:type schema:PropertyValue
60 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
61 schema:name Agricultural and Veterinary Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0705 schema:inDefinedTermSet anzsrc-for:
64 schema:name Forestry Sciences
65 rdf:type schema:DefinedTerm
66 sg:journal.1047114 schema:issn 0042-3106
67 1385-0237
68 schema:name Plant Ecology
69 rdf:type schema:Periodical
70 sg:person.012325635457.31 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
71 schema:familyName Brown
72 schema:givenName Daniel G.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012325635457.31
74 rdf:type schema:Person
75 sg:pub.10.1007/bf00031681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014132479
76 https://doi.org/10.1007/bf00031681
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf00038686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018278090
79 https://doi.org/10.1007/bf00038686
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf00039905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019369189
82 https://doi.org/10.1007/bf00039905
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf02854819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018159378
85 https://doi.org/10.1007/bf02854819
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf02858667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044595134
88 https://doi.org/10.1007/bf02858667
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0033-5894(74)90019-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039079531
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0098-3004(84)90020-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041496652
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0198-9715(88)90012-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032457902
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/s0019-9958(65)90241-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009640697
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1080/02693799608902098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001962525
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1111/j.1365-2389.1989.tb01290.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012819936
101 rdf:type schema:CreativeWork
102 https://doi.org/10.2307/1932609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069656945
103 rdf:type schema:CreativeWork
104 https://doi.org/10.2307/1933067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069657355
105 rdf:type schema:CreativeWork
106 https://doi.org/10.2307/2426297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069928907
107 rdf:type schema:CreativeWork
108 https://doi.org/10.2307/2937096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029024001
109 rdf:type schema:CreativeWork
110 https://doi.org/10.2307/622687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070662702
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.17088.36 schema:alternateName Michigan State University
113 schema:name Department of Geography, Michigan State University, 48824-1115, East Lansing, MI, USA
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...